Become Efficient at Linux
Command Line - Part 1

BY KHAJA

| 9\
Table of Contents

(@003 VN @03 Te/<) o - OO PPV TSR UPPTOPPPROP 3
WHhat's A COMMANA ...eovieeiiieiieiieeieeite ettt ettt e e e et e et esaaeebeessaeenseenseesseeenseenseesssesnseenseennes 3
Combining COMMANMScc.eervieiiiiieieiteete sttt ettt et e et e et e s st ete s bt entesseensesseensesasensesnsenseensans 3
Input, OUtPUL, AN PIPESoouiiiiiiiieiieieee ettt sttt sa et s aa e beeanenseennens 4
Six Commands to Get YOU Start@dcccueerueerierieeiieiie e et esieeeteeeeesteeseeeaeesaeesaeesnaeeseenseesnseens 5
COMMANA #1: WC.ttiitieeiieeieeite ettt ettt e et e e e et e et e e teesaae e se e saeesaeenseesssessseenseessseanseenseessseesseenseennes 5
Command #2: NEAd......cc.vieiieieeeeeee ettt ae e naeeae e aeeenes 7
COMMANA #32 CUL 1vvetieiiieiieieeieeie ettt et et e st e et e bt ete st e estesseenseeseensesseeseessenseensesseensenseensesneenes 8
COmMMANA #47 GIOP .ttt ettt ettt ettt a e s s a e s b b st r et r s 10
COMMANA #5: SOTE c.veuveeuiieiieteetesieete st erte et esteetesteetesteentesseestesseeseesaeseensenseensesseensesseesesnsensesnsens 1
CommAaNd #6: UNIQ...euvereieieieieeeeee ettt st st 13
Detecting Duplicate Files........ccc.ooiiiiiiiiiniiiic e 15
Introducing the Shell ...ttt 17
SREIl VOCADUIATYcuiiiieiieceeeee ettt ettt ettt ebe e e e sbeentesseeneas 18
Pattern Matching for FIlenamesocooieiiiiieiiieieieceeceeeecee et 18
Terminology: Evaluating Expressions and Expanding Patternscccceceevevieneniencenieneenee. 19
Filename Pattern Matching and Your Own Programs..........ccccceceeviniiniininienicnenicnenecenens 20
Evaluating Variables.........cocouiiiiiiiieieeee ettt sttt et 21
Where Variables Come FTOM.......cocuoiuiiiiiiiiiiiiec et 21
Variables and SUPETSTItIONcouiiieriieierieeie ettt sttt be e 22
Patterns Versus Variablescooioiiiiiiiiieceeeee ettt 23
Shortening Commands With ATHAses..........ccccoceriririniniiinir e 24
Redirecting Input and OULPULcocuiiiiiiiiiieictee e 25
Standard Error (stderr) and Redir@CtIONcoveiiiuieiiuiiiiiieeeiie ettt e e 26
Disabling Evaluation with Quotes and ESCapes.........ccccecuevieierieiiinieiinieeceeeeeeeesee e 27
Locating Programs to Be RUNcooiiiiiiiiii e 29
Search Path and AASES........cc.uceiieiiieiiicieeieeeeete ettt et e e e ste e s beebeesseessaeeseesseesnseens 30
Environments and Initialization Files, the Short VEISionccceeeooeeeeeeeeeeeeeeeeeeee e 30

Rerunning COMMANASovuieiiriieieeiieieet ettt ettt ettt et be et e b e sbesbe e tesbeebeeseebesnnenseeneens 32

Viewing the Command HiStOTYcceoiiiiiiiiiiiiieeeeeteee et 32
Recalling Commands from the HiStOry.........ccoociiriiiiriiiiieieeesee e 33
Cursoring Through HISEOTY.....c...couiiiiiiiiiieee et 33
Frequently Asked Questions About Command HiStOrycceceeviirierierienienienienieieeeeieens 34
HiStOTY EXPANSION «..eeieuiiiiiiiieiieeeie ettt ettt ettt ettt e et eene e e sareeesmneesneee et 35
Incremental Search of Command HiStOTY.........ccovuiriiriiriinieiecieieceee e 36
Command-Line EdIting........cceeierieiiniiierieeee ettt s 38
Cursoring Within @ COmMmMANdccceevieriiriieniirieiieiencee sttt sttt s e e sseenaeennens 38
History Expansion with Carets.........c..ccccoiviirininininineneesceeseseseseseses e 39
Vim-Style Command-Line Editing........ccccoceririririnininiencresesesccseeseseseese s 39
CruisSing the FIleSYStemMi.......coviiiiiiieiieeieeec ettt sttt beesae e saeeeneas 40
Visiting Specific Directories Efficiently ..o 41
Jump to YOUT HOME DIT@CLOTYeeiiiiiiiiieeiieiete ettt ettt ettt 41
Move Faster with Tab COMPIEtIONc.coceruiririririinirieereeee s 41
Hop to Frequently Visited Directories Using Aliases or Variables..........c.ccoccovenenincncncncnnnn. 42
Make a Big Filesystem Feel Smaller with CDPATHccccociininininininenneeeeeeeeeeeee 44
Returning to Directories Efficiently..........cccooeriniiinininieeeeeee e 46

2|PAGE

Core Concepts

WHAT'S A COMMAND

The word command has three different meanings in Linux, shown below

Program (or Program (or
shell builtin) shell builtin)

| I
$.|E|'I /binl ||||955‘|

Simple command Simple
command |

Combined command

A program

— An executable program named and executed by a single word, such as Is, or a similar
feature built into the shell, such as cd (called a shell builtin)

A simple command
— A program name (or shell builtin) optionally followed by arguments, such as 1s -1 /bin
A combined command

— Several simple commands treated as a unit, such as the pipeline 1s -1 /bin | less

COMBINING COMMANDS

When you work in Windows, macOS, and most other operating systems, you probably spend your
time running applications like web browsers, word processors, spreadsheets, and games. A typical

3|PAGE

(oo
application is packed with features: everything that the designers thought their users would need.

So, most applications are self-sufficient. They don’t rely on other apps. You might copy and paste
between applications from time to time, but for the most part, they're separate

The Linux command line is different. Instead of big applications with tons of features, Linux
supplies thousands of small commands with very few features. The command cat, for example,
prints files on the screen and that’s about it. 1s lists the files in a directory, mv renames files, and
so on. Each command has a simple, fairly well-defined purpose.

What if you need to do something more complicated? Don’t worry. Linux makes it easy to
combine commands so their individual features work together to accomplish your goal. This way
of working yields a very different mindset about computing. Instead of asking “Which app should
I launch?” to achieve some result, the question becomes “Which commands should I combine?”

INPUT, OUTPUT, AND PIPES

Most Linux commands read input from the keyboard, write output to the screen, or both. Linux
has fancy names for this reading and writing:

stdin (pronounced “standard input” or “standard in”)

The stream of input that Linux reads from your keyboard. When you type any command
at a prompt, you're supplying data on stdin.

stdout (pronounced “standard output” or “standard out”)

The stream of output that Linux writes to your display. When you run the 1s command to
print filenames, the results appear on stdout.

Now comes the cool part. You can connect the stdout of one command to the stdin of another, so
the first command feeds the second. Let’s begin with the familiar 1s -1 command to list a large
directory, such as /bin, in long format:

S 1s -1 /bin
total 12104
—IrWXTr—-Xr—X root root 1113504 Jun 6 2019 bash

root root 170456 Sep 21 2019 bsd-csh
root root 34888 Jul 4 2019 bunzip2
root root 2062296 Sep 18 2020 busybox

root root 34888 Jul 4 2019 bzcat

—IwXr—Xr—x
—IwXr—Xr—x
—IwXr—-xXr—-x

N e e

—ITWXr—Xr-X
-rwxXr-xr-x 1 root root 5047 Apr 27 2017 znew

This directory contains far more files than your display has lines, so the output quickly scrolls off-
screen. It’s a shame that 1s can’t print the information one screenful at a time, pausing until you
press a key to continue. But wait: another Linux command has that feature. The 1ess command
displays a file one screenful at a time:

4|PAGE

i

S less myfile

You can connect these two commands because 1s writes to stdout and less can read from stdin.
Use a pipe to send the output of 1s to the input of less:

S 1s -1 /bin | less

This combined command displays the directory’s contents one screenful at a time. The vertical
bar (|) between the commands is the Linux pipe symbol. It connects the first command’s stdout
to the next command’s stdin. Any command line containing pipes is called a pipeline.

SIX COMMANDS TO GET YOU STARTED

The six commands—wc, head, cut, grep, sort, and unig—have numerous options and modes of
operation that I'll largely skip for now to focus on pipes. To learn more about any command, run
the man command to display full documentation. For example:

S man wc

To demonstrate our six commands in action, I'll use a file named animals.txt that lists some books

python Programming Python 2010 Lutz, Mark

snail SSH, The Secure Shell 2005 Barrett, Daniel

alpaca Intermediate Perl 2012 Schwartz, Randal
robin MySQL High Availability 2014 Bell, Charles
horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

oryx Writing Word Macros 1999 Roman, Steven

Each line contains four facts about book, separated by a single tab character: the animal on the
front cover, the book title, the year of publication, and the name of the first author.

Command #1: wc
The wec command prints the number of lines, words, and characters in a file:

S wc animals.txt
7 51 325 animals.txt

wc reports that the file animals.txt has 7 lines, 51 words, and 325 characters. If you count the
characters by eye, including spaces and tabs, you'll find only 318 characters, but wc also includes
the invisible newline character that ends each line.

The options -1, -w, and -c instruct wc to print only the number of lines, words, and characters,
respectively:

5|PAGE

i

S wc -1 animals.txt
7 animals.txt

S wc -w animals.txt
51 animals.txt

$ wc -c animals.txt
325 animals.txt

Counting is such a useful, general-purpose task that the authors of wc designed the command to
work with pipes. It reads from stdin if you omit the filename, and it writes to stdout. Let’s use 1s
to list the contents of the current directory and pipe them to wc to count lines. This pipeline
answers the question, “How many files are visible in my current directory?”

S 1ls -1
animals.txt
myfile

myfile2

test.py

$ 1s -1 | we -1
4

The option -1, which tells 1s to print its results in a single column, is not strictly necessary here.

wc is the first command you've seen in this chapter, so you're a bit limited in what you can do
with pipes. Just for fun, pipe the output of wc to itself, demonstrating that the same command
can appear more than once in a pipeline. This combined command reports that the number of
words in the output of wc is four: three integers and a filename:

S wc animals.txt

7 51 325 animals.txt
S wc animals.txt | wc —-w
4

Why stop there? Add a third wc to the pipeline and count lines, words, and characters in the

[(e

output “4”:
S wc animals.txt | we -w | wc
1 1 2

The output indicates one line (containing the number 4), one word (the number 4 itself), and two
characters. Why two? Because the line “4” ends with an invisible newline character.

6| PAGE

i

Is Changes Its Behavior When Redirected

Unlike virtually every other Linux command, Is is aware of whether stdout is the screen or
whether it’s been redirected (to a pipe or otherwise). The reason is user-friendliness. When stdout
is the screen, Is arranges its output in multiple columns for convenient reading:

S 1s /bin
bash dir kmod networkctl red tar

bsd-csh dmesg less nisdomainname rm tempfile

When stdout is redirected, however, Is produces a single column. I'll demonstrate this by piping
the output of Is to a command that simply reproduces its input, such as cat:

$ 1s /bin | cat
bash

bsd-csh

bunzip?2

busybox

This behavior can lead to strange-looking results, as in the following example:

S 1s

animals.txt myfile myfile2 test.py
$ 1s | we -1

4

The first 1s command prints all filenames on one line, but the second command reports that 1s
produced four lines. If you aren’t aware of the quirky behavior of 1s, you might find this
discrepancy confusing.

1s has options to override its default behavior. Force 1s to print a single column with the -1
option, or force multiple columns with the -C option.

Command #2: head

The head command prints the first lines of a file. Print the first three lines of animals.txt with
head using the option -n:

S head -n3 animals.txt

python Programming Python 2010 Lutz, Mark
snail SSH, The Secure Shell 2005 Barrett, Daniel
alpaca Intermediate Perl 2012 Schwartz, Randal

If you request more lines than the file contains, head prints the whole file (like cat does). If you
omit the -n option, head defaults to 10 lines (-n10).

7|PAGE

[N
By itself, head is handy for peeking at the top of a file when you don’t care about the rest of the
contents. It’s a speedy and efficient command, even for very large files, because it needn’t read the
whole file. In addition, head writes to stdout, making it useful in pipelines. Count the number of
words in the first three lines of animals. txt:

S head -n3 animals.txt | wc -w
20

head can also read from stdin for more pipeline fun. A common use is to reduce the output from
another command when you don’t care to see all of it, like a long directory listing. For example,
list the first five filenames in the /bin directory:

$ 1s /bin | head -n5
bash

bsd-csh

bunzip?2

busybox

bzcat

Command #3: cut

The cut command prints one or more columns from a file. For example, print all book titles from
animals.txt, which appear in the second column:

$ cut -f2 animals.txt
Programming Python

SSH, The Secure Shell
Intermediate Perl

MySQL High Availability
Linux in a Nutshell
Cisco IOS in a Nutshell
Writing Word Macros

cut provides two ways to define what a “column” is. The first is to cut by field (-£), when the
input consists of strings (fields) each separated by a single tab character. Conveniently, that is
exactly the format of the file animals.txt. The preceding cut command prints the second field of
each line, thanks to the option -£2.

To shorten the output, pipe it to head to print only the first three lines

S cut -f2 animals.txt | head -n3
Programming Python

SSH, The Secure Shell
Intermediate Perl

You can also cut multiple fields, either by separating their field numbers with commas:

8|PAGE

1|\

S cut -f1,3 animals.txt | head -n3

python 2010
snail 2005
alpaca 2012

or by numeric range:

S cut -f2-4 animals.txt | head -n3

Programming Python 2010 Lutz, Mark
SSH, The Secure Shell 2005 Barrett, Daniel
Intermediate Perl 2012 Schwartz, Randal

The second way to define a “column” for cut is by character position, using the -c option. Print
the first three characters from each line of the file, which you can specify either with commas
(1,2,3)orasarange (1-3):

$ cut -cl-3 animals.txt
pyt
sna
alp
rob
hor
don
ory

Now that you've seen the basic functionality, try something more practical with cut and pipes.
Imagine that the animals.txt file is thousands of lines long, and you need to extract just the
authors’ last names. First, isolate the fourth field, author name:

S cut -f4 animals.txt
Lutz, Mark

Barrett, Daniel
Schwartz, Randal

Then pipe the results to cut again, using the option -d (meaning “delimiter”) to change the
separator character to a comma instead of a tab, to isolate the authors’ last names

$ cut -f4 animals.txt | cut -d, -fl
Lutz

Barrett

Schwartz

9|PAGE

f v
Command #4: grep
grep is an extremely powerful command, but for now I'll hide most of its capabilities and say it

prints lines that match a given string. For example, the following command displays lines from
animals.txt that contain the string Nutshell:

S grep Nutshell animals.txt
horse Linux in a Nutshell 2009 Siever, Ellen
donkey Cisco IOS in a Nutshell 2005 Boney, James

You can also print lines that don’t match a given string, with the -+ option. Notice the lines
containing “Nutshell” are absent:

S grep -v Nutshell animals.txt

python Programming Python 2010 Lutz, Mark

snail SSH, The Secure Shell 2005 Barrett, Daniel
alpaca Intermediate Perl 2012 Schwartz, Randal
robin MySQL High Availability 2014 Bell, Charles

oryx Writing Word Macros 1999 Roman, Steven

In general, grep is useful for finding text in a collection of files. The following command prints
lines that contain the string per1 in files with names ending in .txt:

S grep Perl *.txt

animals.txt:alpaca Intermediate Perl 2012 Schwartz,
Randal

essay.txt:really love the Perl programming language, which is
essay.txt:languages such as Perl, Python, PHP, and Ruby

In this case, grep found three matching lines, one in animals.txt and two in essay.txt.

grep reads stdin and writes stdout, making it great for pipelines. Suppose you want to know how
many subdirectories are in the large directory /usr/lib. There is no single Linux command to
provide that answer, so construct a pipeline. Begin with the 1s -1 command:

S 1s -1 /usr/lib

drwxrwxr-x 12 root root 4096 Mar 1 2020 4kstogram
drwxr-xr-x 3 root root 4096 Nov 30 2020 GraphicsMagick-1.4
drwxr-xr-x 4 root root 4096 Mar 19 2020 NetworkManager
—rw-r--r-—- 1 root root 35568 Dec 1 2017 attica kde.so
—IrWXTr—-Xr—X 1 root root 684 May 5 2018 cnf-update-db

10| PAGE

Notice that 1s -1 marks directories with a d at the beginning of the line. Use cut to isolate the

first column, which may or may not be a d:

S 1s -1 /usr/lib | cut -cl
d
d
d

Then use grep to keep only the lines containing d:

ls -1 /usr/lib | cut -cl |

$
d
d
d

grep d

Finally, count lines with wc, and you have your answer, produced by a four-command pipeline—

/usr/lib contains 145 subdirectories:

$ 1s -1 /usr/lib |
145

cut -cl |

Command #5: sort

The sort command reorders the lines of a file into ascending order (the default):

$ sort animals.txt

grep d |

wc -1

alpaca Intermediate Perl 2012 Schwartz, Randal
donkey Cisco IOS in a Nutshell 2005 Boney, James
horse Linux in a Nutshell 2009 Siever, Ellen

oryx Writing Word Macros 1999 Roman, Steven

python Programming Python 2010 Lutz, Mark

robin MySQL High Availability 2014 Bell, Charles
snail SSH, The Secure Shell 2005 Barrett, Daniel

or descending order (with the -r option):

$ sort -r animals.txt

snail SSH, The Secure Shell 2005 Barrett, Daniel

robin MySQL High Availability 2014 Bell, Charles
python Programming Python 2010 Lutz, Mark

oryx Writing Word Macros 1999 Roman, Steven

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James
alpaca Intermediate Perl 2012 Schwartz, Randal

n|PAGE

(o9
sort can order the lines alphabetically (the default) or numerically (with the -n option). I'll
demonstrate this with pipelines that cut the third field in animals.txt, the year of publication:

$ cut -f3 animals.txt Unsorted
2010

2005

2012

2014

2009

2005

1999

S cut -f3 animals.txt | sort -n Ascending
1999

2005

2005

2009

2010

2012

2014

S cut -f3 animals.txt | sort -nr Descending
2014

2012

2010

2009

2005

2005

1999

To learn the year of the most recent book in animals.txt, pipe the output of sort to the input of
head and print just the first line:

S cut -f3 animals.txt | sort -nr | head -nl
2014

Maximum and Minimum Values

sort and head are powerful partners when working with numeric data, one value per line. You
can print the maximum value by piping the data to:

| sort -nr | head -nl
and print the minimum value with:
| sort -n | head -nl

As another example, let’s play with the file /etc/passwd, which lists the users that can run
processes on the system.* You'll generate a list of all users in alphabetical order. Peeking at the
first five lines, you see something like this:

12|PAGE

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch01.html#idm46086840812000

(| 9\
$ head -n5 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
smith:x:1000:1000:Aisha Smith,,, :/home/smith:/bin/bash
jones:x:1001:1001:Bilbo Jones,,, :/home/jones:/bin/bash

Each line consists of strings separated by colons, and the first string is the username, so you can
isolate the usernames with the cut command:

$ head -n5 /etc/passwd | cut -d: -fl
root

daemon

bin

smith

jones

and sort them:

$ head -n5 /etc/passwd | cut -d: -fl | sort
bin

daemon

jones

root

smith

To produce the sorted list of all usernames, not just the first five, replace head with cat:
$ cat /etc/passwd | cut -d: -fl | sort

To detect if a given user has an account on your system, match their username with grep. Empty
output means no account:

$ cut -d: -fl /etc/passwd | grep -w jones

jones

$ cut -d: -fl /etc/passwd | grep -w rutabaga (produces no
output)

The -w option instructs grep to match full words only, not partial words, in case your system also
has a username that contains “jones”, such as sallyjones?2

Command #6: uniq

The uniq command detects repeated, adjacent lines in a file. By default, it removes the repeats.
I'll demonstrate this with a simple file containing capital letters:

S cat letters
A
A

13|PAGE

1|\

uniqg letters

QP om0y ©w

Notice that uniqg reduced the first three a lines to a single 2, but it left the last 2 in place because
it wasn’t adjacent to the first three.

You can also count occurrences with the -c option

$ unig -c letters

SN W
Q» w

Suppose you have a tab-separated file of students’ final grades for a university course, ranging
from 2 (best) to F (worst):

cat grades
Geraldine
Carmine
Kayla
Sophia

$

C

B

A

A

B Haresh
C Liam

B Elijah

B Emma

A Olivia

D Noah

I Ava

You'd like to print the grade with the most occurrences. (If there’s a tie, print just one of the
winners.) Begin by isolating the grades with cut and sorting them:

$ cut -fl grades | sort
A
A

14|PAGE

1|\

MO QQ0WWwm

Next, use uniqg to count adjacent lines:

$ cut -fl grades | sort | unig -c
3 A

B
C
D
F

[T RS

Then sort the lines in reverse order, numerically, to move the most frequently occurring grade to
the top line:

S cut -fl grades | sort | unig -c | sort -nr
4 B

[e AC R OV]

A
C
F
D

and keep just the first line with head:

$ cut -fl grades | sort | unig -c | sort -nr | head -nl
4 B

Finally, since you want just the letter grade, not the count, isolate the grade with cut:

$ cut -fl grades | sort | unig -c | sort -nr | head -nl | cut -c9
B

DETECTING DUPLICATE FILES

Let’s combine what you've learned with a larger example. Suppose you're in a directory full of
JPEG files and you want to know if any are duplicates:

$ 1s
image00l.jpg 1image005.jpg 1mage009.jpg imagel0l3.jpg 1imagel0l7.]jpg
image002.jpg 1image006.jpg 1mage0l0.jpg imagel0l4.jpg 1image0l8.jpg

15| PAGE

[N
You can answer this question with a pipeline. You'll need another command, md5sum, which
examines a file’s contents and computes a 32-character string called a checksum:

S mdS5sum image001.Jjpg
146b16392906533£02e91bdf21cb9563 image00l.jpg

A given file’s checksum, for mathematical reasons, is very, very likely to be unique. If two files
have the same checksum, therefore, they are almost certainly duplicates. Here, md5sum indicates
the first and third files are duplicates:

S mdS5sum image001.Jjpg image002.jpg image003.jpg
146b16392906533f02e91bdf21cb9563 image001l.jpg
63da88b3ddde0843c94269638dfa6c958 1image002.jpg
146b16392906533£02e91bdf21cb9563 1image003.jpg

Duplicate checksums are easy to detect by eye when there are only three files, but what if you
have three thousand? It’s pipes to the rescue. Compute all the checksums, use cut to isolate the
first 32 characters of each line, and sort the lines to make any duplicates adjacent:

$ mdSsum *.Jjpg | cut -cl-32 | sort
1258012d57050ef6005739d0e6f6a257
146b16392906533f02e91bdf21cb9563
146b16392906533£f02e91bdf21cb9563
17£339ed03733£402£74c£386209%aeb3

Now add unigq to count repeated lines:

$ mdSsum *.]jpg | cut -cl-32 | sort | unig -c
1 1258012d57050ef6005739d0e6f6a257
2 146b163929b6533f02e91bdf21cb9563
1 17£339ed03733f402£f74c£38620%aeb3

If there are no duplicates, all of the counts produced by uniqg will be 1. Sort the results
numerically from high to low, and any counts greater than 1 will appear at the top of the output:

$ mdSsum *.Jjpg | cut -cl-32 | sort | unig -c | sort -nr
3 fod46d4ed’66daca87badl07aede21c8fcc
2 ¢7978522c58425f6af3f095efldelcd5
2 146b16392906533f02e91bdf21cb9563
1 d8ad913044a51408ecledB8a204ea9502

Now let’s remove the nonduplicates. Their checksums are preceded by six spaces, the number
one, and a single space. We'll use grep -v to remove these lines

16 |PAGE

(|
$ mdSsum *.jpg | cut —cl—32‘;| sort | unig -c¢ | sort -nr | grep -v "
1 AL
3 fo4do6ded’66daca87bad07aede21c8fcc
2 ¢c7978522c58425f6af3f095efldelcd5
2 146b16392906533f02e91bdf21cb9563

Finally, you have your list of duplicate checksums, sorted by the number of occurrences,
produced by a beautiful six-command pipeline. If it produces no output, there are no duplicate
files.

This command would be even more useful if it displayed the filenames of the duplicates, but that
operation requires features we haven’t discussed yet.

$ mdSsum *.jpg | grep 146b163929b6533£f02e91bdf21cb9563
146b163929b6533£02e91bd£f21cb9563 image001l.jpg
146b163929b6533£02e91bd£f21cb9563 1image003.jpg

and cleaning up the output with cut:

$ mdS5sum *.jpg | grep 146b163929b6533f02e91bdf21cb9563 | cut -c35-
image001.jpg
image003.jpg

Introducing the Shell

So, you can run commands at a prompt. But what is that prompt? Where does it come from, how
are your commands run, and why does it matter?

That little prompt is produced by a program called a shell. It’s a user interface that sits between
you and the Linux operating system. Linux supplies several shells, and the most common (and the
standard for this book) is called bash.

bash and other shells do much more than simply run commands. For example, when a command
includes a wildcard (*) to refer to multiple files at once:

S 1s *.py
data.py main.py user interface.py

the wildcard is handled entirely by the shell, not by the program 1s. The shell evaluates the
expression *.py and invisibly replaces it with a list of matching filenames before 1s runs. In other
words, 1s never sees the wildcard. From the perspective of 1s, you typed the following command:

$ 1ls data.py main.py user interface.py
It redirects stdin and stdout transparently so the programs involved have no idea they are

communicating with each other.

17| PAGE

i o

Every time a command runs, some steps are the responsibility of the invoked program, such as 1s,
and some are the responsibility of the shell. Expert users understand which is which. That’s one
reason they can create long, complex commands off the top of their head and run them
successfully. They already know what the command will do before they press Enter, in part because
they understand the separation between the shell and the programs it invokes.

Rather than cover dozens of shell features, I'll hand you just enough information to carry you to
the next step of your learning journey:

— Pattern matching for filenames

— Variables to store values

— Redirection of input and output

— Quoting and escaping to disable certain shell features
— The search path for locating programs to run

— Saving changes to your shell environment

SHELL VOCABULARY

The word shell has two meanings. Sometimes it means the concept of the Linux shell in general,
as in “The shell is a powerful tool” or “bash is a shell.” Other times it means a specific instance of a
shell running on a given Linux computer, awaiting your next command.

In this book, the meaning of shell should be clear from the context most of the time. When
necessary, I'll refer to the second meaning as a shell instance, a running shell, or your current shell.

Some shell instances, but not all, present a prompt so you can interact with them. I'll use the term
interactive shell to refer to these instances. Other shell instances are noninteractive—they run a
sequence of commands and exit.

PATTERN MATCHING FOR FILENAMES

you worked with several commands that accept filenames as arguments, such as cut, sort, and
grep. These commands (and many others) accept multiple filenames as arguments. For example,
you can search for the word Linux in one hundred files at once, named chapter: through
chapterioo:

S grep Linux chapterl chapter2 chapter3 chapter4 chapter5 ...and so
on...

Listing multiple files by name is a tedious time-waster, so the shell provides special characters as a
shorthand to refer to files or directories with similar names. Many folks call these characters

18|PAGE

wildcards, but the more general concépt is called pattern matching or globbing. Pattern matching
is one of the two most common techniques for speed that Linux users learn

Most Linux users are familiar with the star or asterisk character (*), which matches any sequence
of zero or more characters (except for a leading dot)! in file or directory paths:

$ grep Linux chapter*

Behind the scenes, the shell (not grep!) expands the pattern chapter* into a list of 100 matching
filenames. Then the shell runs grep.

Many users have also seen the question mark (?) special character, which matches any single
character (except a leading dot). For example, you could search for the word Linux in chapters 1
through g only, by providing a single question mark to make the shell match single digits:

S grep Linux chapter?
or in chapters 10 through 99, with two question marks to match two digits:
S grep Linux chapter??

Fewer users are familiar with square brackets ([1), which request the shell to match a single
character from a set. For example, you could search only the first five chapters:

S grep Linux chapter[12345]
Equivalently, you could supply a range of characters with a dash:
S grep Linux chapter[1-5]

You could also search even-numbered chapters, combining the asterisk and the square brackets
to make the shell match filenames ending in an even digit:

S grep Linux chapter*[02468]

Any characters, not just digits, may appear within the square brackets for matching. For example,
filenames that begin with a capital letter, contain an underscore, and end with an @ symbol would
be matched by the shell in this command:

$ 1s [A-Z]* *@

Terminology: Evaluating Expressions and Expanding Patterns

Strings that you enter on the command line, such as chapter* or Efficient Linux, are called
expressions. An entire command like 1s -1 chapter* is an expression too.

19| PAGE

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch02.html#idm46086841675376

(9
When the shell interprets and handles special characters in an expression, such as asterisks and
pipe symbols, we say that the shell evaluates the expression.

Pattern matching is one kind of evaluation. When the shell evaluates an expression that contains
pattern-matching symbols, such as chapter*, and replaces it with filenames that match the
pattern, we say that the shell expands the pattern.

Patterns are valid almost anywhere that you'd supply file or directory paths on the command line.
For example, you can list all files in the directory /etc with names ending in .conf using a pattern:

$ 1s -1 /etc/*.conf
/etc/adduser.conf
/etc/appstream.conf

/etc/wodim.conf

Be careful using a pattern with a command that accepts just one file or directory argument, such
as cd. You might not get the behavior you expect:

S 1s

Pictures Poems Politics

S ed P* Three directories will match
bash: cd: too many arguments

If a pattern doesn’t match any files, the shell leaves it unchanged to be passed literally as a
command argument. In the following command, the pattern *.doc matches nothing in the
current directory, so 1s looks for a filename literally named * . doc and fails:

$ 1s *.doc
/bin/ls: cannot access '*.doc': No such file or directory

When working with file patterns, two points are vitally important to remember. The first, as I've

already emphasized, is that the shell, not the invoked program, performs the pattern matching. I
know I keep repeating this, but I'm frequently surprised by how many Linux users don’t know it

and develop superstitions about why certain commands succeed or fail.

The second important point is that shell pattern matching applies only to file and directory paths.
It doesn’t work for usernames, hostnames, and other types of arguments that certain commands
accept. You also cannot type (say) szrt at the beginning of the command line and expect the
shell to run the sort program. (Some Linux commands such as grep, sed, and awk perform their
own brands of pattern matching.

Filename Pattern Matching and Your Own Programs

All programs that accept filenames as arguments automatically “work” with pattern matching,
because the shell evaluates the patterns before the program runs. This is true even for programs
and scripts you write yourself. For example, if you wrote a program english2swedish that

20| PAGE

A
translated files from English to Swedish and accepted multiple filenames on the command line,
you could instantly run it with pattern matching:

S english2swedish *.txt

EVALUATING VARIABLES

A running shell can define variables and store values in them. A shell variable is a lot like a
variable in algebra—it has a name and a value. An example is the shell variable HOME. Its value is
the path to your Linux home directory, such as /home/smith. Another example is USER, whose
value is your Linux username, which I'll assume is smith.

To print the values of HOME and USER on stdout, run the command printenv:

S printenv HOME
/home/smith

S printenv USER
smith

When the shell evaluates a variable, it replaces the variable name with its value. Simply place a
dollar sign in front of the name to evaluate the variable. For example, $HOME evaluates to the
string /home/smith.

The easiest way to watch the shell evaluate a command line is to run the echo command, which
simply prints its arguments (after the shell is finished evaluating them):

$ echo My name is SUSER and my files are in S$HOME Evaluating
variables

My name is smith and my files are in /home/smith

S echo ch*ter9 Evaluating a
pattern

chapter9

WHERE VARIABLES COME FROM

Variables like uUser and HOME are predefined by the shell. Their values are set automatically when
you log in. (More on this process later.) Traditionally, such predefined variables have uppercase
names.

You also may define or modify a variable anytime by assigning it a value using this syntax:
name=value

For example, if you work frequently in the directory /home/smith/Projects, you could assign its
name to a variable:

S work=SHOME/Projects

21|PAGE

(| e

and use it as a handy shortcut with ca:

S cd Swork
S pwd
/home/smith/Projects

You may supply $work to any command that expects a directory:

S cp myfile Swork
$ 1ls Swork
myfile

When defining a variable, no spaces are permitted around the equals sign. If you forget, the shell
will assume (wrongly) that the first word on the command line is a program to run, and the
equals sign and value are its arguments, and you’ll see an error message:

$ work = $SHOME/Projects The shell assumes "work" is a
command
work: command not found

A user-defined variable like work is just as legitimate and usable as a system-defined variable like
HOME. The only practical difference is that some Linux programs change their behavior internally
based on the values of HOME, USER, and other system-defined variables. For example, a Linux
program with a graphical interface might retrieve your username from the shell and display it.
Such programs don’t pay attention to an invented variable like work because they weren't
programmed to do so.

VARIABLES AND SUPERSTITION

When you print the value of a variable with echo:

S echo SHOME
/home/smith

you might think that the echo command examines the HOME variable and prints its value. That is
not the case. echo knows nothing about variables. It just prints whatever arguments you hand it.
What'’s really happening is that the shell evaluates $HOME before running echo. From echo’s
perspective, you typed

S echo /home/smith

This behavior is extremely important to understand, especially as we delve into more complicated
commands. The shell evaluates the variables in a command—as well as patterns and other shell
constructs—before executing the command.

22| PAGE

i/
PATTERNS VERSUS VARIABLES

Let’s test your understanding of pattern and variable evaluation. Suppose you're in a directory
with two subdirectories, mammals and reptiles, and oddly, the mammals subdirectory contains
files named lizard.txt and snake.txt:

S 1s

mammals reptiles

$ 1s mammals
lizard.txt snake.txt

In the real world, lizards and snakes are not mammals, so the two files should be moved to the
reptiles subdirectory. Here are two proposed ways to do it. One works, and one does not:

mv mammals/*.txt reptiles Method 1

FILES="lizard.txt snake.txt"
mv mammals/S$SFILES reptiles Method 2

Method 1 works because patterns match an entire file path. See how the directory name mammals
is part of both matches for mammals/*. txt:

S echo mammals/*.txt
mammals/lizard.txt mammals/snake.txt

So, method 1 operates as if you'd typed the following correct command:
S mv mammals/lizard.txt mammals/snake.txt reptiles

Method 2 uses variables, which evaluate to their literal value only. They have no special handling
for file paths:

S echo mammals/SFILES
mammals/lizard.txt snake.txt

So, method 2 operates as if you'd typed the following problematic command:
$ mv mammals/lizard.txt snake.txt reptiles

This command looks for the file snake.txt in the current directory, not in the mammals
subdirectory, and fails:

$ mv mammals/SFILES reptiles
/bin/mv: cannot stat 'snake.txt': No such file or directory

To make a variable work in this situation, use a for loop that prepends the directory name
mammals to each filename:

23|PAGE

(| 09\
FILES="1lizard.txt snake.txt"
for £ in SFILES; do
mv mammals/$f reptiles
done

SHORTENING COMMANDS WITH ALIASES

A variable is a name that stands in for a value. The shell also has names that stand in for
commands. They're called aliases. Define an alias by inventing a name and following it with a
equals sign and a command:

S alias g=grep A command with no arguments
$ alias 11="1s -1" A command with arguments: quotes are
required

Run an alias by typing its name as a command. When aliases are shorter than the commands they
invoke, you save typing time:

S 11 Runs "ls -1"
—-rw-r--r—— 1 smith smith 325 Jul 3 17:44 animals.txt

S g Nutshell animals.txt Runs "grep Nutshell
animals.txt"

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

You can define an alias that has the same name as an existing command, effectively replacing that
command in your shell. This practice is called shadowing the command. Suppose you like the
less command for reading files, but you want it to clear the screen before displaying each page.
This feature is enabled with the -c option, so define an alias called “less” that runs less -c

S alias less="less -c"

Aliases take precedence over commands of the same name, so you have now shadowed the less
command in the current shell.

To list a shell’s aliases and their values, run alias with no arguments:

$ alias
alias g='"'grep'
alias 11="1s -1"

To see the value of a single alias, run alias followed by its name:

$ alias g
alias g='grep'

To delete an alias from a shell, run unalias:
$ unalias g

24| PAGE

i/
REDIRECTING INPUT AND OUTPUT

The shell controls the input and output of the commands it runs. You've already seen one
example: pipes, which direct the stdout of one command to the stdin of another. The pipe syntax,
|, is a feature of the shell.

Another shell feature is redirecting stdout to a file. For example, if you use grep to print matching
lines from the animals.txt file

S grep Perl animals.txt
alpaca Intermediate Perl 2012 Schwartz, Randal

You can send that output to a file instead, using a shell feature called output redirection. Simply
add the symbol > followed by the name of a file to receive the output:

S grep Perl animals.txt > outfile

$ cat outfile
alpaca Intermediate Perl 2012 Schwartz, Randal

You have just redirected stdout to the file outfile instead of the display. If the file outfile doesn’t
exist, it’s created. If it does exist, redirection overwrites its contents. If you'd rather append to the
output file rather than overwrite it, use the symbol >> instead:

S grep Perl animals.txt > outfile S
echo There was just one match >> outfile S cat
outfile

alpaca Intermediate Perl 2012 Schwartz, Randal

There was just one match

Output redirection has a partner, input redirection, that redirects stdin to come from a file instead
of the keyboard. Use the symbol < followed by a filename to redirect stdin.

Many Linux commands that accept filenames as arguments, and read from those files, also read
from stdin when run with no arguments. An example is wc for counting lines, words, and
characters in a file:

$ wc animals.txt

7 51 325 animals.txt
$ wc < animals.txt

7 51 325

25| PAGE

1|\

Standard Error (stderr) and Redirection

Uln your day-to-day Linux use, you may notice that some output cannot be redirected by >, such
as certain error messages. For example, ask cp to copy a file that doesn’t exist, and it produces this
erTor message:

S cp nonexistent.txt file.txt
cp: cannot stat 'nonexistent.txt': No such file or directory

If you redirect the output (stdout) of this cp command to a file, errors, the message still appears
on-screen:

S cp nonexistent.txt file.txt > errors
cp: cannot stat 'nonexistent.txt': No such file or directory

and the file errors is empty:

$ cat errors

Why does this happen? Linux commands can produce more than one stream of output. In
addition to stdout, there is also stderr (pronounced “standard error” or “standard err”), a second
stream of output that is traditionally reserved for error messages. The streams stderr and stdout
look identical on the display, but internally they are separate. You can redirect stderr with the
symbol 2> followed by a filename:

S cp nonexistent.txt file.txt 2> errors
$ cat errors
cp: cannot stat 'nonexistent.txt': No such file or directory

and append stderr to a file with 2>> followed by a filename:

S cp nonexistent.txt file.txt 2> errors

S cp another.txt file.txt 2>> errors

S cat errors

cp: cannot stat 'nonexistent.txt': No such file or directory
cp: cannot stat 'another.txt': No such file or directory

To redirect both stdout and stderr to the same file, use «> followed by a filename:

$ echo This file exists > goodfile.txt $ cat
goodfile.txt nonexistent.txt &> all.output

$ cat all.output

This file exists

cat: nonexistent.txt: No such file or directory

It’s very important to understand how these two wc commands differ in behavior:

26 |[PAGE

i

— In the first command, wc receives the filename animals.txt as an argument, so wc is aware
that the file exists. wc deliberately opens the file on disk and reads its contents.

— In the second command, wc is invoked with no arguments, so it reads from stdin, which is
usually the keyboard. The shell, however, sneakily redirects stdin to come from
animals.txt instead. wc has no idea that the file animals.txt exists.

The shell can redirect input and output in the same command:

S wc < animals.txt > count
$ cat count
7 51 325

and can even use pipes at the same time. Here, grep reads from redirected stdin and pipes the
results to wc, which writes to redirected stdout, producing the file count:

grep Perl < animals.txt | wc > count
$ cat count
1 6 47

DISABLING EVALUATION WITH QUOTES AND ESCAPES

Normally the shell uses whitespace as a separator between words. The following command has
four words—a program name followed by three arguments:

$ 1ls filel file2 file3

Sometimes, however, you need the shell to treat whitespace as significant, not as a separator. A
common example is whitespace in a filename such as Efficient Linux Tips.txt:

S 1s -1
-rw-r--r-- 1 smith smith 36 Aug 9 22:12 Efficient Linux Tips.txt

If you refer to such a filename on the command line, your command may fail because the shell
treats the space characters as separators:

$ cat Efficient Linux Tips.txt

cat: Efficient: No such file or directory
cat: Linux: No such file or directory
cat: Tips.txt: No such file or directory

To force the shell to treat spaces as part of a filename, you have three options—single quotes,
double quotes, and backslashes:

$ cat 'Efficient Linux Tips.txt'
$ cat "Efficient Linux Tips.txt"
$ cat Efficient\ Linux\ Tips.txt

27|PAGE

[N
Single quotes tell the shell to treat every character in a string literally, even if the character
ordinarily has special meaning to the shell, such as spaces and dollar signs:

S echo 'SHOME'
SHOME

Double quotes tell the shell to treat all characters literally except for certain dollar signs and a few
others you'll learn later:

$ echo "Notice that $HOME is evaluated" Double quotes
Notice that /home/smith is evaluated
$ echo 'Notice that $HOME is not' Single quotes

Notice that SHOME is not

A backslash, also called the escape character, tells the shell to treat the next character literally.
The following command includes an escaped dollar sign:

S echo \SHOME
SHOME

Backslashes act as escape characters even within double quotes:

S echo "The value of \$HOME is S$SHOME"
The value of SHOME is /home/smith

but not within single quotes:

S echo 'The value of \$HOME is S$HOME'
The value of \SHOME is S$HOME

Use the backslash to escape a double quote character within double quotes:

S echo "This message is \"sort of\" interesting"
This message is "sort of" interesting

A backslash at the end of a line disables the special nature of the invisible newline character,
allowing shell commands to span multiple lines:

$ echo "This is a very long message that needs to extend \
onto multiple lines"
This is a very long message that needs to extend onto multiple lines

Final backslashes are great for making pipelines more readable

$ cut -fl grades \
| sort \
| unigq -c \
| sort -nr \

28| PAGE

(| o

| head -nl \
| cut -c9

When used this way, the backslash is sometimes called a line continuation character.

A leading backslash before an alias escapes the alias, causing the shell to look for a command of
the same name, ignoring any shadowing;:

S alias less="less -c" Define an alias
S less myfile Run the alias, which invokes less -c
$ \less myfile Run the standard less command, not the alias

LOCATING PROGRAMS TO BE RUN

When the shell first encounters a simple command, such as 1s *.py, it’s just a string of
meaningless characters. Quick as a flash, the shell splits the string into two words, “Is” and “*.py”.
In this case, the first word is the name of a program on disk, and the shell must locate the
program to run it.

The program 1s, it turns out, is an executable file in the directory /bin. You can verify its location
with this command:

S 1s -1 /bin/ls
-rwxr-xr-x 1 root root 133792 Jan 18 2018 /bin/ls

or you can change directories with cd /bin and run this lovely, cryptic-looking command:

S 1s 1s
1s

which uses the command 1s to list the executable file Is.

How does the shell locate 1s in the /bin directory? Behind the scenes, the shell consults a
prearranged list of directories that it holds in memory, called a search path. The list is stored as
the value of the shell variable PATH

$ echo SPATH
/home/smith/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/java/
bin

Directories in a search path are separated by colons (:). For a clearer view, convert the colons to
newline characters by piping the output to the tr command, which translates one character into
another

$ echo SPATH | tr : "\n"
/home/smith/bin
/usr/local/bin

/usr/bin

29| PAGE

(| ey
/bin
/usr/games
/usr/lib/java/bin

The shell consults directories in your search path from first to last when locating a program like
1s. “Does /home/smith/bin/ls exist? No. Does /usr/local/bin/ls exist? Nope. How about
/usr/bin/Is? No again! Maybe /bin/Is? Yes, there it is! I'll run /bin/Is.” This search happens too
quickly to notice.

To locate a program in your search path, use the which command:

$ which cp
/bin/cp

$ which which
/usr/bin/which

or the more powerful (and verbose) type command, a shell builtin that also locates aliases,
functions, and shell builtins

$ type cp

cp is hashed (/bin/cp)

S type 11

11 is aliased to ‘/bin/ls -1’

S type type
type is a shell builtin

Your search path may contain the same-named command in different directories, such as
/usr/bin/less and /bin/less. The shell runs whichever command appears in the earlier directory in
the path. By leveraging this behavior, you can override a Linux command by placing a same-
named command in an earlier directory in your search path, such as your personal $HOME/bin
directory.

Search Path and Aliases

When the shell searches for a command by name, it checks if that name is an alias before
checking the search path. That’s why an alias can shadow (take precedence over) a command of
the same name.

The search path is a great example of taking something mysterious about Linux and showing it
has an ordinary explanation. The shell doesn’t pull commands out of thin air or locate them by
magic. It methodically examines directories in a list until it finds the requested executable file.

ENVIRONMENTS AND INITIALIZATION FILES, THE SHORT VERSION

A running shell holds a bunch of important information in variables: the search path, the current
directory, your preferred text editor, your customized shell prompt, and more. The variables of a

30| PAGE

[oo
running shell are collectively called the shell’s environment. When the shell exits, its environment
is destroyed.

It would be extremely tedious to define every shell’s environment by hand. The solution is to
define the environment once, in shell scripts called startup files and initialization files, and have
every shell execute these scripts on startup. The effect is that certain information appears to be
“global” or “known” to all of your running shells.

It’s located in your home directory and named .bashrc (pronounced “dot bash R C”). Because its
name begins with a dot, 1s doesn’t list it by default:

$ 1ls SHOME

apple banana carrot

$ 1s -a S$HOME

.bashrc apple banana carrot

If s(HOME/.bashrc doesn’t exist, create it with a text editor. Commands you place in this file will
execute automatically when a shell starts up,> so it’s a great place to define variables for the shell’s
environment, and other things important to the shell, such as aliases. Here is a sample .bashrc
file. Lines beginning with # are comments:

Set the search path
PATH=SHOME/bin:/usr/local/bin:/usr/bin:/bin
Set the shell prompt

pSl='s '

Set your preferred text editor
EDITOR=emacs

Start in my work directory

cd SHOME/Work/Projects

Define an alias

alias g=grep

Offer a hearty greeting

echo "Welcome to Linux, friend!"

Any changes you make to $HOME/.bashrc do not affect any running shells, only future shells. You
can force a running shell to reread and execute $HOME/.bashrc with either of the following
commands:

S source S$SHOME/.bashrc
S . SHOME/.bashrc

This process is known as sourcing the initialization file. If someone tells you to “source your dot-
bash-R-C file,” they mean run one of the preceding commands.

31|PAGE

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch02.html#idm46086828415696

(| o

Rerunning Commands

Suppose you've just executed a lengthy command with a detailed pipeline, like this one from
“Detecting Duplicate Files”

$ mdSsum *.Jjpg | cut -cl-32 | sort | unig -c | sort -nr

and you want to run it a second time. Don’t retype it! Instead, ask the shell to reach back into
history and rerun the command. Behind the scenes, the shell keeps a record of the commands you
invoke so you can easily recall and rerun them with a few keystrokes. This shell feature is called
command history. Expert Linux users make heavy use of command history to speed up their work
and avoid wasting time.

Similarly, suppose you make a mistake typing the preceding command before you run it, such as
misspelling “jpg” as “jg”:

$ mdSsum *.jg | cut -cl-32 | sort | unig -c | sort -nr

To fix the mistake, don’t press the Backspace key dozens of times and retype everything. Instead,
change the command in place. The shell supports command-line editing for fixing typos and
performing all sorts of modifications like a text editor can.

This chapter will show you how to save lots of time and typing by leveraging command history
and command-line editing.

VIEWING THE COMMAND HISTORY

A command history is simply a list of previous commands that you've executed in an interactive
shell. To see a shell’s history, run the history command, which is a shell builtin. The commands
appear in chronological order with ID numbers for easy reference. The output looks something
like this:

S history
1000 cd S$HOME/Music
1001 1s

1002 mv jazz.mp3 jazzy-song.mp3
1003 play jazzy-song.mp3

: Omitting 477 lines
1481 cd

1482 firefox https://google.com
1483 history Includes the command you just ran

The output of history can be hundreds of lines long (or more). Limit it to the most recent
commands by adding an integer argument, which specifies the number of lines to print:

32| PAGE

S history 3 Print the 3 most recent commands
1482 firefox https://google.com
1483 history

1484 history 3

Since history writes to stdout, you also can process the output with pipes. For example, view
your history a screenful at a time:

S history | less Earliest to latest entry
S history | sort -nr | less Latest to earliest entry

or print only the historical commands containing the word cd:

$ history | grep -w cd

1000 cd $HOME/Music

1092 cd ..

1123 cd Finances

1375 cd Checking

1481 cd

1485 history | grep -w cd

To clear (delete) the history for the current shell, use the -c option:
$ history -c
RECALLING COMMANDS FROM THE HISTORY
Three time-saving ways to recall commands from a shell’s history:
Cursoring:
Extremely simple to learn but often slow in practice
History expansion
Harder to learn (frankly, it’s cryptic) but can be very fast
Incremental search
Both simple and fast

Each method is best in particular situations, so I recommend learning all three. The more
techniques you know, the better you can choose the right one in any situation.

CURSORING THROUGH HISTORY

To recall your previous command in a given shell, press the up arrow key. It’s that simple. Keep
pressing the up arrow to recall earlier commands in reverse chronological order. Press the down

33| PAGE

i o

arrow to head in the other direction (toward more recent commands). When you reach the
desired command, press Enter to run it.

Cursoring through the command history is one of the two most common speedups that Linux
users learn. Cursoring is efficient if your desired command is nearby in the history—no more than
two or three commands in the past—but it’s tedious to reach commands that are further away.
Whacking the up arrow 137 times gets old quickly.

The best use case for cursoring is recalling and running the immediately previous command.

Frequently Asked Questions About Command History

How many commands are stored in a shell’s history?

The maximum is five hundred or whatever number is stored in the shell variable
HISTSIZE, which you can change:

S echo SHISTSIZE
500
S HISTSIZE=10000

Computer memory is so cheap and plentiful that it makes sense to set HISTSIZE to a large
number so you can recall and rerun commands from the distant past. (A history of 10,000
commands occupies only about 200K of memory.) Or be daring and store unlimited
commands by setting the value to -1.

What text is appended to the history?

The shell appends exactly what you type, unevaluated. If you run 1s $HOME, the history
will contain “Is SHOME”, not “Is /home/smith”."

Are repeated commands appended to the history?

The answer depends on the value of the variable HISTCONTROL. By default, if this variable
is unset, then every command is appended. If the value is ignoredups (which I recommend),
then repeated commands are not appended if they are consecutive

$ HISTCONTROL=ignoredups

Does each shell have a separate history, or do all shells share a single history?
Each interactive shell has a separate history.

I launched a new interactive shell and it already has a history. Why?

Whenever an interactive shell exits, it writes its history to the file $HOME/.bash_history or
whatever path is stored in the shell variable HISTFILE:

34| PAGE

| N
$ echo SHISTFILE
/home/smith/.bash history

New interactive shells load this file on startup, so they immediately have a history. It’s a quirky
system if you're running many shells because they all write $HISTFILE on exit, so it’s a bit
unpredictable which history a new shell will load.

The variable HISTFILESIZE controls how many lines of history are written to the file. If you
change HISTSIZE to control the size of the history in memory, consider updating HISTFILESIZE
as well:

$ echo SHISTFILESIZE
500
$ HISTFILESIZE=10000

HISTORY EXPANSION

History expansion is a shell feature that accesses the command history using special expressions.
The expressions begin with an exclamation point, which traditionally is pronounced “bang.” For
example, two exclamation points in a row (“bang bang”) evaluates to the immediately previous
command:

$ echo Efficient Linux

Efficient Linux

SEE echo
Efficient Linux

To refer to the most recent command that began with a certain string, place an exclamation point
in front of that string. So, to rerun the most recent grep command, run “bang grep”:

S !grep
grep Perl animals.txt
alpaca Intermediate Perl 2012 Schwartz, Randal

To refer to the most recent command that contained a given string somewhere, not just at the
beginning of the command, surround the string with question marks as well

$!2grep?

history | grep -w cd
1000 cd SHOME/Music
1092 cd

You can also retrieve a particular command from a shell’s history by its absolute position—the ID
number to its left in the output of history. For example, the expression !1203 (“bang 1023”)
means “the command at position 1023 in the history”:

35| PAGE

i

$ history | grep hosts
1203 cat /etc/hosts

S 11203 The command at position 1023
cat /etc/hosts

127.0.0.1 localhost

127.0.1.1 example.directdevops.blog

HEN example.directdevops.blog

A negative value retrieves a command by its relative position in the history, rather than absolute
position. For example, ! -3 (“bang minus three”) means “the command you executed three
commands ago”:

S history
4197 cd /tmp/junk
4198 rm *
4199 head -n2 /etc/hosts
4199 cd
4200 history
8 =3
head -n2 /etc/hosts
127.0.0.1 localhost
127.0.1.1 example.directdevops.blog

History expansion is quick and convenient, if a bit cryptic

INCREMENTAL SEARCH OF COMMAND HISTORY

Wouldn't it be great if you could type a few characters of a command and the rest would appear
instantly, ready to run? Well, you can. This speedy feature of the shell, called incremental search,
is similar to the interactive suggestions provided by web search engines. In most cases,
incremental search is the easiest and fastest technique to recall commands from history, even
commands you ran long ago. I highly recommend adding it to your toolbox:

1. At the shell prompt, press Ctrl-R (the R stands for reverse incremental search).
Start typing any part of a previous command—beginning, middle, or end.
With each character you type, the shell displays the most recent historical command that
matches your typing so far.

4. When you see the command you want, press Enter to run it.

Suppose you typed the command cd $HOME/Finances/Bank a while ago and you want to
rerun it. Press Ctrl-R at the shell prompt. The prompt changes to indicate an incremental search:

(reverse—-i-search) ':

36 |PAGE

(| o

Start typing the desired command. For example, type c:
(reverse—-i-search) ': c

The shell displays its most recent command that contains the string c, highlighting what you've
typed:

(reverse—-i-search) '': less /etc/hosts
Type the next letter, d:
(reverse—-i-search) ': cd

The shell displays its most recent command that contains the string cd, again highlighting what
you've typed:

(reverse-i-search) " ': cd /usr/local

Continue typing the command, adding a space and a dollar sign:

(reverse-i-search) " ': cd $

The command line becomes:

(reverse—-i-search) " ': cd SHOME/Finances/Bank

This is the command you want. Press Enter to run it, and you're done in five quick keystrokes.

I've assumed here that cd $HOME/Finances/Bank was the most recent matching command in
the history. What if it’s not? What if you typed a whole bunch of commands that contain the
same string? If so, the preceding incremental search would have displayed a different match, such
as:

(reverse—-i-search) " ': cd SHOME/Music

What now? You could type more characters to hone in on your desired command, but instead,
press Ctrl-R a second time. This keystroke causes the shell to jump to the next matching
command in the history:

(reverse—-i-search) " ': cd SHOME/Linux/Books

Keep pressing Ctrl-R until you reach the desired command:

(reverse—-i-search) ' ': cd SHOME/Finances/Bank
and press Enter to run it.

Here are a few more tricks with incremental search:

37| PAGE

f o9
— To recall the most recent string that you searched for and executed, begin by pressing
Ctrl-R twice in a row.

— To stop an incremental search and continue working on the current command, press the
Escape key, or Ctrl-], or any key for command-line editing (the next topic in this chapter),
such as the left or right arrow key.

— To quit an incremental search and clear the command line, press Ctrl-G or Ctrl-C.

Take the time to become expert with incremental search. You'll soon be locating commands with
incredible speed

COMMAND-LINE EDITING
There are all sorts of reasons to edit a command, either while you type it or after you've run it:
— To fix mistakes

— To create a command piece by piece, such as by typing the end of the command first, then
moving to the start of the line and typing the beginning

— To construct a new command based on a previous one from your command history 4

Three ways to edit a command to build your skill and speed:
— Cursoring: Again, the slowest and least powerful method but simple to learn

— Caret notation: A form of history expansion

— Emacs- or Vim-style keystrokes: To edit the command line in powerful ways

Cursoring Within a Command

Simply press the left arrow and right arrow keys to move back and forth on the command line,
one character at a time. Use the Backspace or Delete key to remove text, and then type any
corrections you need. Below Table summarizes these and other standard keystrokes for editing
the command line.

Cursoring back and forth is easy but inefficient. It’s best when the changes are small and simple.

Left arrow Move left by one character
Right arrow Move right by one character
Ctrl + leftarrow Move left by one word

Ctrl + right arrow Move right by one word

38| PAGE

Home

End Move to end of command line
Backspace Delete one character before the cursor
Delete Delete one character beneath the cursor

History Expansion with Carets

Suppose you've mistakenly run the following command by typing g instead of jpg:

$ mdSsum *.jg | cut -cl-32 | sort | unig -c | sort -nr
md5sum: '*.jg': No such file or directory

To run the command properly, you could recall it from the command history, cursor over to the
mistake and fix it, but there’s a quicker way to accomplish your goal. Just type the old (wrong)
text, the new (corrected) text, and a pair of carets ("), like this:

S "jg*jpg
Press Enter, and the correct command will appear and run:

$ ~J9”Jipg
mdS5sum *.Jjpg | cut -cl-32 | sort | unig -c | sort -nr

The caret syntax, which is a type of history expansion, means, “In the previous command, instead
of jg, substitute jpg.” Notice that the shell helpfully prints the new command before executing it,
which is standard behavior for history expansion.

This technique changes only the first occurrence of the source string (jg) in the command. If your
original command contained jg more than once, only the first instance would change to jpg

Vim-Style Command-Line Editing

The most powerful way to edit a command line is with familiar keystrokes inspired by the text
editors Emacs and Vim. If you're already skilled with one of these editors, you can jump into this
style of command-line editing right away.

The shell default is Emacs-style editing, and | recommend it as easier to learn and use. If you
prefer Vim-style editing, run the following command (or add it to your $HOME/.bashrc file and

source it):
Move forward by one character Ctrl-f h
Move backward by one character Ctrl-b I
Move forward by one word Meta-f w

Move backward by one word

Move to beginning of line

Move to end of line

Transpose (swap) two characters
Transpose (swap) two words
Capitalize first letter of next word
Uppercase entire next word
Lowercase entire next word

Change case of the current character
Insert the next character verbatim, including
control characters

Delete forward by one character
Delete backward by one character
Cut forward by one word

Cut backward by one word

Cut from cursor to beginning of line

Cut from cursor to end of line

Delete the entire line

Paste (yank) the most recently deleted text
Paste (yank) the next deleted text (after a previous
yank)

Undo the previous editing operation

Undo all edits made so far

Switch from insertion mode to command mode
Switch from command mode to insertion mode
Abort an edit operation in progress

Clear the display

Cruising the Filesystem

Meta-b
Ctrl-a
Ctrl-e
Ctrl-t
Meta-t
Meta-c
Meta-u
Meta-|
n/a
Ctrl-v

Ctrl-d

Backspace or Ctrl-h
Meta-d
Meta-Backspace or
Ctrl-w

Ctrl-u

Ctrl-k

Ctrl-e Ctrl-u

Ctrl-y

Meta-y

Ctrl-_
Meta-r
n/a
n/a
Ctrl-g
Ctrl-I

Xp
n/a

n/a
n/a

Ctrl-v

x

dw
db

gn
dd

n/a

Escape

n/a
Ctrl-I

The techniques in this chapter will help you navigate the filesystem more quickly with less typing.

They look deceptively simple but have enormous bang for the buck, with small learning curves

and big payoffs. These techniques fall into two broad categories:

— Moving quickly to a specific directory

— Returning rapidly to a directory you've visited before

40 |PAGE

i/
VISITING SPECIFIC DIRECTORIES EFFICIENTLY

If you ask 10 Linux experts what is the most tedious aspect of the command line, seven of them
will say, “Typing long directory paths.”

After all, if your work files are in /home/smith/Work/Projects/Apps/Neutron-Star/src/include,
your financial documents are in /home/smith/Finances/Bank/Checking/Statements, and your
videos are in /data/Arts/Video/Collection, it’s no fun to retype these paths over and over. In this
section, you'll learn techniques to navigate to a given directory efficiently.

Jump to Your Home Directory

Let’s begin with the basics. No matter where you go in the filesystem, you can return to your
home directory by running cd with no arguments:

S pwd

/etc

S cd

S pwd
/home/smith

To jump to subdirectories within your home directory from anywhere in the filesystem, refer to
your home directory with a shorthand rather than an absolute path such as /home/smith. One
shorthand is the shell variable HOME:

$ cd SHOME/Work
Another is a tilde:
S cd ~/Work

Both $HOME and ~ are expressions expanded by the shell, a fact that you can verify by echoing
them to stdout:

S echo $HOME ~
/home/smith /home/smith

The tilde can also refer to another user’s home directory if you place it immediately in front of
their username:

$ echo ~Jjones
/home/jones

Move Faster with Tab Completion

When you're entering cd commands, save typing by pressing the Tab key to produce directory
names automatically. As a demonstration, visit a directory that contains subdirectories, such as
Jusr:

4 |PAGE

i

$ cd /usr
S 1s
bin games include 1lib local sbin share src

Suppose you want to visit the subdirectory share. Type sha and press the Tab key once:

$ cd sha<Tab>

The shell completes the directory name for you:

$ cd share/

This handy shortcut is called tab completion. It works immediately when the text that you've
typed matches a single directory name. When the text matches multiple directory names, your
shell needs more information to complete the desired name. Suppose you had typed only s and
pressed Tab:

$ cd s<Tab>

The shell cannot complete the name share (yet) because other directory names begin with s too:
sbin and src. Press Tab a second time and the shell prints all possible completions to guide you:

S cd s<Tab><Tab>
sbin/ share/ src/

and waits for your next action. To resolve the ambiguity, type another character, h, and press Tab
once:

$ cd sh<Tab>
The shell completes the name of the directory for you, from sh to share:
$ cd share/

In general, press Tab once to perform as much completion as possible, or press twice to print all
possible completions. The more characters you type, the less ambiguity and the better the match.

Hop to Frequently Visited Directories Using Aliases or Variables

If you visit a faraway directory frequently, such as /home/smith/Work/Projects/Web/src/include,
create an alias that performs the cd operation:

In a shell configuration file:
alias work="cd $HOME/Work/Projects/Web/src/include"

Simply run the alias anytime to reach your destination:

$ work
S pwd
/home/smith/Work/Projects/Web/src/include

42 |PAGE

i o

Alternatively, create a variable to hold the directory path:

$ work=SHOME/Work/Projects/Web/src/include
S cd Swork

S pwd
/home/smith/Work/Projects/Web/src/include
$ 1ls Swork/css

main.css mobile.css

Edit Frequently Edited Files with an Alias

Sometimes, the reason for visiting a directory frequently is to edit a particular file. If that’s the
case, consider defining an alias to edit that file by absolute path without changing directory. The
following alias definition lets you edit $HOME/.bashrc, no matter where you are in the filesystem,
by running rcedit. No cd is required

Place in a shell configuration file and source it:
alias rcedit='SEDITOR S$HOME/.bashrc'

If you regularly visit lots of directories with long paths, you can create aliases or variables for each
of them. This approach has some disadvantages, however:

— It’s hard to remember all those aliases/variables.

— You might accidentally create an alias with the same name as an existing command,
causing a conflict.

An alternative is to create a shell function like the one below

Define the gcd function
ged () |
Accept 1 argument that's a string key, and perform a different
"cd" operation for each key.
case "S1" in
work)
cd SHOME/Work/Projects/Web/src/include
recipes)
cd $HOME/Family/Cooking/Recipes
video)
cd /data/Arts/Video/Collection
beatles)
cd SHOME/Music/mp3/Artists/B/Beatles

rrs
*)

The supplied argument was not one of the supported keys

43|PAGE

i\

echo "gcd: unknown key '$1'"
return 1
esac
Helpfully print the current directory name to indicate where you
are
pwd

}
Set up tab completion
complete -W "work recipes video beatles" gcd

Store the function in a shell configuration file such as $HOME]/.bashrc. source it, and it’s ready to
run. Type gcd followed by one of the supported keys to quickly visit the associated directory:

$ gcd beatles
/home/smith/Music/mp3/Artists/B/Beatles

As a bonus, the script’s final line runs the command complete, a shell builtin that sets up
customized tab completion for gcd, so it completes the four supported keys. Now you don’t have
to remember gcd’s arguments! Just type gcd followed by a space and press the Tab key twice, and
the shell will print all the keys for your reference, and you can complete any of them in the usual
way:

$ gcd <Tab><Tab>

beatles recipes video work
S gcd v<Tab><Enter>
/data/Arts/Video/Collection

Make a Big Filesystem Feel Smaller with CDPATH

The gcd function handles only the directories that you specify. The shell provides a more general
cd-ing solution without this shortcoming, called a cd search path. This shell feature transformed
how I navigate the Linux filesystem.

uppose you have an important subdirectory that you visit often, named Photos. It’s located at
/home/smith/Family/Memories/Photos. As you cruise around the filesystem, anytime you want to
get to the Photos directory, you may have to type a long path, such as:

$ cd ~/Family/Memories/Photos

Wouldn't it be great if you could shorten this path to just Photos, no matter where you are in the
filesystem, and reach your subdirectory?

S cd Photos

Normally, this command would fail:

44|PAGE

i o

bash: cd: Photos: No such file or directory

unless you happen to be in the correct parent directory (~/Family/Memories) or some other
directory with a Photos subdirectory by coincidence. Well, with a little setup, you can instruct cd
to search for your Photos subdirectory in locations other than your current directory. The search
is lightning fast and looks only in parent directories that you specify. For example, you could
instruct cd to search $HOME/Family/Memories in addition to the current directory. Then, when
you type cd Photos from elsewhere in the filesystem, cd will succeed:

S pwd

/etc

$ cd Photos
/home/smith/Family/Memories/Photos

A cd search path works like your command search path, $pPATH, but instead of finding commands,
it finds subdirectories. Configure it with the shell variable copATH, which has the same format as
PATH: a list of directories separated by colons. If your CDPATH consists of these four directories, for
example:

SHOME : SHOME /Projects: SHOME/Family/Memories: /usr/local
and you type:
$ cd Photos

then cd will check the existence of the following directories in order, until it finds one or it fails
entirely:

Photos in the current directory

$HOME/Photos

$HOME]/Projects/Photos

$HOME/Family/Memories/Photos

Jusr/local/Photos

In this case, cd succeeds on its fourth try and changes directory to
$HOME/Family/Memories/Photos. If two directories in $CDPATH have a subdirectory named
Photos, the earlier parent wins.

45| PAGE

(| o

Returning to Directories Efficiently

You've just seen how to visit a directory efficiently. Now I'll show you how to revisit a directory
quickly when you need to go back.

Toggle Between Two Directories with “cd -”

Suppose you're working in a deep directory and you run cd to go somewhere else:

S pwd
/home/smith/Finances/Bank/Checking/Statements
$ cd /etc

and then think, “No, wait, [want to go back to the Statements directory where I just was.” Don’t
retype the long directory path. Just run cd with a dash as an argument:

$ cd -
/home/smith/Finances/Bank/Checking/Statements

This command returns your shell to its previous directory and helpfully prints its absolute path so
you know where you are.

To jump back and forth between a pair of directories, run cd - repeatedly. This is a time-saver
when you're doing focused work in two directories in a single shell. There’s a catch, however: the
shell remembers just one previous directory at a time. For example, if you are toggling between
/usr/local/bin and /etc:

S pwd

/usr/local/bin

$ cd /etc The shell remembers /usr/local/bin
§ ecel = The shell remembers /etc
/usr/local/bin

$ cd - The shell remembers /usr/local/bin
/etc

46 |PAGE

