

Become Efficient at Linux
Command Line – Part 1

BY KHAJA

1 | P A G E

Table of Contents

Core Concepts ... 3

What’s A Command .. 3

Combining Commands ... 3

Input, Output, and Pipes .. 4

Six Commands to Get You Started ... 5

Command #1: wc .. 5

Command #2: head .. 7

Command #3: cut .. 8

Command #4: grep ... 10

Command #5: sort .. 11

Command #6: uniq ... 13

Detecting Duplicate Files ... 15

Introducing the Shell ... 17

Shell Vocabulary ... 18

Pattern Matching for Filenames .. 18

Terminology: Evaluating Expressions and Expanding Patterns ... 19

Filename Pattern Matching and Your Own Programs ... 20

Evaluating Variables ... 21

Where Variables Come From ... 21

Variables and Superstition .. 22

Patterns Versus Variables ... 23

Shortening Commands with Aliases ... 24

Redirecting Input and Output .. 25

Standard Error (stderr) and Redirection .. 26

Disabling Evaluation with Quotes and Escapes ... 27

Locating Programs to Be Run ... 29

Search Path and Aliases ... 30

Environments and Initialization Files, the Short Version ... 30

Rerunning Commands .. 32

2 | P A G E

Viewing the Command History .. 32

Recalling Commands from the History .. 33

Cursoring Through History ... 33

Frequently Asked Questions About Command History .. 34

History Expansion ... 35

Incremental Search of Command History .. 36

Command-Line Editing ... 38

Cursoring Within a Command ... 38

History Expansion with Carets.. 39

Vim-Style Command-Line Editing .. 39

Cruising the Filesystem ... 40

Visiting Specific Directories Efficiently ... 41

Jump to Your Home Directory ... 41

Move Faster with Tab Completion .. 41

Hop to Frequently Visited Directories Using Aliases or Variables .. 42

Make a Big Filesystem Feel Smaller with CDPATH ... 44

Returning to Directories Efficiently .. 46

3 | P A G E

Core Concepts

WHAT’S A COMMAND

The word command has three different meanings in Linux, shown below

A program

− An executable program named and executed by a single word, such as ls, or a similar

feature built into the shell, such as cd (called a shell builtin)

A simple command

− A program name (or shell builtin) optionally followed by arguments, such as ls -l /bin

A combined command

− Several simple commands treated as a unit, such as the pipeline ls -l /bin | less

COMBINING COMMANDS

When you work in Windows, macOS, and most other operating systems, you probably spend your

time running applications like web browsers, word processors, spreadsheets, and games. A typical

4 | P A G E

application is packed with features: everything that the designers thought their users would need.

So, most applications are self-sufficient. They don’t rely on other apps. You might copy and paste

between applications from time to time, but for the most part, they’re separate

The Linux command line is different. Instead of big applications with tons of features, Linux

supplies thousands of small commands with very few features. The command cat, for example,

prints files on the screen and that’s about it. ls lists the files in a directory, mv renames files, and

so on. Each command has a simple, fairly well-defined purpose.

What if you need to do something more complicated? Don’t worry. Linux makes it easy to

combine commands so their individual features work together to accomplish your goal. This way

of working yields a very different mindset about computing. Instead of asking “Which app should

I launch?” to achieve some result, the question becomes “Which commands should I combine?”

INPUT, OUTPUT, AND PIPES

Most Linux commands read input from the keyboard, write output to the screen, or both. Linux

has fancy names for this reading and writing:

stdin (pronounced “standard input” or “standard in”)

 The stream of input that Linux reads from your keyboard. When you type any command

at a prompt, you’re supplying data on stdin.

stdout (pronounced “standard output” or “standard out”)

 The stream of output that Linux writes to your display. When you run the ls command to

print filenames, the results appear on stdout.

Now comes the cool part. You can connect the stdout of one command to the stdin of another, so

the first command feeds the second. Let’s begin with the familiar ls -l command to list a large

directory, such as /bin, in long format:

$ ls -l /bin

total 12104

-rwxr-xr-x 1 root root 1113504 Jun 6 2019 bash

-rwxr-xr-x 1 root root 170456 Sep 21 2019 bsd-csh

-rwxr-xr-x 1 root root 34888 Jul 4 2019 bunzip2

-rwxr-xr-x 1 root root 2062296 Sep 18 2020 busybox

-rwxr-xr-x 1 root root 34888 Jul 4 2019 bzcat

⋮
-rwxr-xr-x 1 root root 5047 Apr 27 2017 znew

This directory contains far more files than your display has lines, so the output quickly scrolls off-

screen. It’s a shame that ls can’t print the information one screenful at a time, pausing until you

press a key to continue. But wait: another Linux command has that feature. The less command

displays a file one screenful at a time:

5 | P A G E

$ less myfile

You can connect these two commands because ls writes to stdout and less can read from stdin.

Use a pipe to send the output of ls to the input of less:

$ ls -l /bin | less

This combined command displays the directory’s contents one screenful at a time. The vertical

bar (|) between the commands is the Linux pipe symbol. It connects the first command’s stdout

to the next command’s stdin. Any command line containing pipes is called a pipeline.

SIX COMMANDS TO GET YOU STARTED

The six commands—wc, head, cut, grep, sort, and uniq—have numerous options and modes of

operation that I’ll largely skip for now to focus on pipes. To learn more about any command, run

the man command to display full documentation. For example:

$ man wc

To demonstrate our six commands in action, I’ll use a file named animals.txt that lists some books

python Programming Python 2010 Lutz, Mark

snail SSH, The Secure Shell 2005 Barrett, Daniel

alpaca Intermediate Perl 2012 Schwartz, Randal

robin MySQL High Availability 2014 Bell, Charles

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

oryx Writing Word Macros 1999 Roman, Steven

Each line contains four facts about book, separated by a single tab character: the animal on the

front cover, the book title, the year of publication, and the name of the first author.

Command #1: wc

The wc command prints the number of lines, words, and characters in a file:

$ wc animals.txt

 7 51 325 animals.txt

wc reports that the file animals.txt has 7 lines, 51 words, and 325 characters. If you count the

characters by eye, including spaces and tabs, you’ll find only 318 characters, but wc also includes

the invisible newline character that ends each line.

The options -l, -w, and -c instruct wc to print only the number of lines, words, and characters,

respectively:

6 | P A G E

$ wc -l animals.txt

7 animals.txt

$ wc -w animals.txt

51 animals.txt

$ wc -c animals.txt

325 animals.txt

Counting is such a useful, general-purpose task that the authors of wc designed the command to

work with pipes. It reads from stdin if you omit the filename, and it writes to stdout. Let’s use ls

to list the contents of the current directory and pipe them to wc to count lines. This pipeline

answers the question, “How many files are visible in my current directory?”

$ ls -1

animals.txt

myfile

myfile2

test.py

$ ls -1 | wc -l

4

The option -1, which tells ls to print its results in a single column, is not strictly necessary here.

wc is the first command you’ve seen in this chapter, so you’re a bit limited in what you can do

with pipes. Just for fun, pipe the output of wc to itself, demonstrating that the same command

can appear more than once in a pipeline. This combined command reports that the number of

words in the output of wc is four: three integers and a filename:

$ wc animals.txt

 7 51 325 animals.txt

$ wc animals.txt | wc -w

4

Why stop there? Add a third wc to the pipeline and count lines, words, and characters in the

output “4”:

$ wc animals.txt | wc -w | wc

 1 1 2

The output indicates one line (containing the number 4), one word (the number 4 itself), and two

characters. Why two? Because the line “4” ends with an invisible newline character.

7 | P A G E

ls Changes Its Behavior When Redirected

Unlike virtually every other Linux command, ls is aware of whether stdout is the screen or

whether it’s been redirected (to a pipe or otherwise). The reason is user-friendliness. When stdout

is the screen, ls arranges its output in multiple columns for convenient reading:

$ ls /bin

bash dir kmod networkctl red tar

bsd-csh dmesg less nisdomainname rm tempfile

⋮

When stdout is redirected, however, ls produces a single column. I’ll demonstrate this by piping

the output of ls to a command that simply reproduces its input, such as cat:

$ ls /bin | cat

bash

bsd-csh

bunzip2

busybox

⋮

This behavior can lead to strange-looking results, as in the following example:

$ ls

animals.txt myfile myfile2 test.py

$ ls | wc -l

4

The first ls command prints all filenames on one line, but the second command reports that ls

produced four lines. If you aren’t aware of the quirky behavior of ls, you might find this

discrepancy confusing.

ls has options to override its default behavior. Force ls to print a single column with the -1

option, or force multiple columns with the -C option.

Command #2: head

The head command prints the first lines of a file. Print the first three lines of animals.txt with

head using the option -n:

$ head -n3 animals.txt

python Programming Python 2010 Lutz, Mark

snail SSH, The Secure Shell 2005 Barrett, Daniel

alpaca Intermediate Perl 2012 Schwartz, Randal

If you request more lines than the file contains, head prints the whole file (like cat does). If you

omit the -n option, head defaults to 10 lines (-n10).

8 | P A G E

By itself, head is handy for peeking at the top of a file when you don’t care about the rest of the

contents. It’s a speedy and efficient command, even for very large files, because it needn’t read the

whole file. In addition, head writes to stdout, making it useful in pipelines. Count the number of

words in the first three lines of animals.txt:

$ head -n3 animals.txt | wc -w

20

head can also read from stdin for more pipeline fun. A common use is to reduce the output from
another command when you don’t care to see all of it, like a long directory listing. For example,
list the first five filenames in the /bin directory:

$ ls /bin | head -n5

bash

bsd-csh

bunzip2

busybox

bzcat

Command #3: cut

The cut command prints one or more columns from a file. For example, print all book titles from

animals.txt, which appear in the second column:

$ cut -f2 animals.txt

Programming Python

SSH, The Secure Shell

Intermediate Perl

MySQL High Availability

Linux in a Nutshell

Cisco IOS in a Nutshell

Writing Word Macros

cut provides two ways to define what a “column” is. The first is to cut by field (-f), when the

input consists of strings (fields) each separated by a single tab character. Conveniently, that is

exactly the format of the file animals.txt. The preceding cut command prints the second field of

each line, thanks to the option -f2.

To shorten the output, pipe it to head to print only the first three lines

$ cut -f2 animals.txt | head -n3

Programming Python

SSH, The Secure Shell

Intermediate Perl

You can also cut multiple fields, either by separating their field numbers with commas:

9 | P A G E

$ cut -f1,3 animals.txt | head -n3

python 2010

snail 2005

alpaca 2012

or by numeric range:

$ cut -f2-4 animals.txt | head -n3

Programming Python 2010 Lutz, Mark

SSH, The Secure Shell 2005 Barrett, Daniel

Intermediate Perl 2012 Schwartz, Randal

The second way to define a “column” for cut is by character position, using the -c option. Print

the first three characters from each line of the file, which you can specify either with commas

(1,2,3) or as a range (1-3):

$ cut -c1-3 animals.txt

pyt

sna

alp

rob

hor

don

ory

Now that you’ve seen the basic functionality, try something more practical with cut and pipes.

Imagine that the animals.txt file is thousands of lines long, and you need to extract just the

authors’ last names. First, isolate the fourth field, author name:

$ cut -f4 animals.txt

Lutz, Mark

Barrett, Daniel

Schwartz, Randal

⋮

Then pipe the results to cut again, using the option -d (meaning “delimiter”) to change the

separator character to a comma instead of a tab, to isolate the authors’ last names

$ cut -f4 animals.txt | cut -d, -f1

Lutz

Barrett

Schwartz

⋮

10 | P A G E

Command #4: grep

grep is an extremely powerful command, but for now I’ll hide most of its capabilities and say it

prints lines that match a given string. For example, the following command displays lines from

animals.txt that contain the string Nutshell:

$ grep Nutshell animals.txt

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

You can also print lines that don’t match a given string, with the -v option. Notice the lines

containing “Nutshell” are absent:

$ grep -v Nutshell animals.txt

python Programming Python 2010 Lutz, Mark

snail SSH, The Secure Shell 2005 Barrett, Daniel

alpaca Intermediate Perl 2012 Schwartz, Randal

robin MySQL High Availability 2014 Bell, Charles

oryx Writing Word Macros 1999 Roman, Steven

In general, grep is useful for finding text in a collection of files. The following command prints

lines that contain the string Perl in files with names ending in .txt:

$ grep Perl *.txt

animals.txt:alpaca Intermediate Perl 2012 Schwartz,

Randal

essay.txt:really love the Perl programming language, which is

essay.txt:languages such as Perl, Python, PHP, and Ruby

In this case, grep found three matching lines, one in animals.txt and two in essay.txt.

grep reads stdin and writes stdout, making it great for pipelines. Suppose you want to know how

many subdirectories are in the large directory /usr/lib. There is no single Linux command to

provide that answer, so construct a pipeline. Begin with the ls -l command:

$ ls -l /usr/lib

drwxrwxr-x 12 root root 4096 Mar 1 2020 4kstogram

drwxr-xr-x 3 root root 4096 Nov 30 2020 GraphicsMagick-1.4

drwxr-xr-x 4 root root 4096 Mar 19 2020 NetworkManager

-rw-r--r-- 1 root root 35568 Dec 1 2017 attica_kde.so

-rwxr-xr-x 1 root root 684 May 5 2018 cnf-update-db

⋮

11 | P A G E

Notice that ls -l marks directories with a d at the beginning of the line. Use cut to isolate the

first column, which may or may not be a d:

$ ls -l /usr/lib | cut -c1

d

d

d

-

-

⋮

Then use grep to keep only the lines containing d:

$ ls -l /usr/lib | cut -c1 | grep d

d

d

d

⋮

Finally, count lines with wc, and you have your answer, produced by a four-command pipeline—

/usr/lib contains 145 subdirectories:

$ ls -l /usr/lib | cut -c1 | grep d | wc -l

145

Command #5: sort

The sort command reorders the lines of a file into ascending order (the default):

$ sort animals.txt

alpaca Intermediate Perl 2012 Schwartz, Randal

donkey Cisco IOS in a Nutshell 2005 Boney, James

horse Linux in a Nutshell 2009 Siever, Ellen

oryx Writing Word Macros 1999 Roman, Steven

python Programming Python 2010 Lutz, Mark

robin MySQL High Availability 2014 Bell, Charles

snail SSH, The Secure Shell 2005 Barrett, Daniel

or descending order (with the -r option):

$ sort -r animals.txt

snail SSH, The Secure Shell 2005 Barrett, Daniel

robin MySQL High Availability 2014 Bell, Charles

python Programming Python 2010 Lutz, Mark

oryx Writing Word Macros 1999 Roman, Steven

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

alpaca Intermediate Perl 2012 Schwartz, Randal

12 | P A G E

sort can order the lines alphabetically (the default) or numerically (with the -n option). I’ll

demonstrate this with pipelines that cut the third field in animals.txt, the year of publication:

$ cut -f3 animals.txt Unsorted

2010

2005

2012

2014

2009

2005

1999

$ cut -f3 animals.txt | sort -n Ascending

1999

2005

2005

2009

2010

2012

2014

$ cut -f3 animals.txt | sort -nr Descending

2014

2012

2010

2009

2005

2005

1999

To learn the year of the most recent book in animals.txt, pipe the output of sort to the input of

head and print just the first line:

$ cut -f3 animals.txt | sort -nr | head -n1

2014

Maximum and Minimum Values

sort and head are powerful partners when working with numeric data, one value per line. You

can print the maximum value by piping the data to:

... | sort -nr | head -n1

and print the minimum value with:

... | sort -n | head -n1

As another example, let’s play with the file /etc/passwd, which lists the users that can run

processes on the system.4 You’ll generate a list of all users in alphabetical order. Peeking at the

first five lines, you see something like this:

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch01.html#idm46086840812000

13 | P A G E

$ head -n5 /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

smith:x:1000:1000:Aisha Smith,,,:/home/smith:/bin/bash

jones:x:1001:1001:Bilbo Jones,,,:/home/jones:/bin/bash

Each line consists of strings separated by colons, and the first string is the username, so you can

isolate the usernames with the cut command:

$ head -n5 /etc/passwd | cut -d: -f1

root

daemon

bin

smith

jones

and sort them:

$ head -n5 /etc/passwd | cut -d: -f1 | sort

bin

daemon

jones

root

smith

To produce the sorted list of all usernames, not just the first five, replace head with cat:

$ cat /etc/passwd | cut -d: -f1 | sort

To detect if a given user has an account on your system, match their username with grep. Empty

output means no account:

$ cut -d: -f1 /etc/passwd | grep -w jones

jones

$ cut -d: -f1 /etc/passwd | grep -w rutabaga (produces no

output)

The -w option instructs grep to match full words only, not partial words, in case your system also

has a username that contains “jones”, such as sallyjones2.

Command #6: uniq

The uniq command detects repeated, adjacent lines in a file. By default, it removes the repeats.

I’ll demonstrate this with a simple file containing capital letters:

$ cat letters

A

A

14 | P A G E

A

B

B

A

C

C

C

C

$ uniq letters

A

B

A

C

Notice that uniq reduced the first three A lines to a single A, but it left the last A in place because

it wasn’t adjacent to the first three.

You can also count occurrences with the -c option

$ uniq -c letters

 3 A

 2 B

 1 A

 4 C

Suppose you have a tab-separated file of students’ final grades for a university course, ranging

from A (best) to F (worst):

$ cat grades

C Geraldine

B Carmine

A Kayla

A Sophia

B Haresh

C Liam

B Elijah

B Emma

A Olivia

D Noah

F Ava

You’d like to print the grade with the most occurrences. (If there’s a tie, print just one of the

winners.) Begin by isolating the grades with cut and sorting them:

$ cut -f1 grades | sort

A

A

15 | P A G E

A

B

B

B

B

C

C

D

F

Next, use uniq to count adjacent lines:

$ cut -f1 grades | sort | uniq -c

 3 A

 4 B

 2 C

 1 D

 1 F

Then sort the lines in reverse order, numerically, to move the most frequently occurring grade to

the top line:

$ cut -f1 grades | sort | uniq -c | sort -nr

 4 B

 3 A

 2 C

 1 F

 1 D

and keep just the first line with head:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1

 4 B

Finally, since you want just the letter grade, not the count, isolate the grade with cut:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1 | cut -c9

B

DETECTING DUPLICATE FILES

Let’s combine what you’ve learned with a larger example. Suppose you’re in a directory full of

JPEG files and you want to know if any are duplicates:

$ ls

image001.jpg image005.jpg image009.jpg image013.jpg image017.jpg

image002.jpg image006.jpg image010.jpg image014.jpg image018.jpg

⋮

16 | P A G E

You can answer this question with a pipeline. You’ll need another command, md5sum, which

examines a file’s contents and computes a 32-character string called a checksum:

$ md5sum image001.jpg

146b163929b6533f02e91bdf21cb9563 image001.jpg

A given file’s checksum, for mathematical reasons, is very, very likely to be unique. If two files

have the same checksum, therefore, they are almost certainly duplicates. Here, md5sum indicates

the first and third files are duplicates:

$ md5sum image001.jpg image002.jpg image003.jpg

146b163929b6533f02e91bdf21cb9563 image001.jpg

63da88b3ddde0843c94269638dfa6958 image002.jpg

146b163929b6533f02e91bdf21cb9563 image003.jpg

Duplicate checksums are easy to detect by eye when there are only three files, but what if you

have three thousand? It’s pipes to the rescue. Compute all the checksums, use cut to isolate the

first 32 characters of each line, and sort the lines to make any duplicates adjacent:

$ md5sum *.jpg | cut -c1-32 | sort

1258012d57050ef6005739d0e6f6a257

146b163929b6533f02e91bdf21cb9563

146b163929b6533f02e91bdf21cb9563

17f339ed03733f402f74cf386209aeb3

⋮

Now add uniq to count repeated lines:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c

 1 1258012d57050ef6005739d0e6f6a257

 2 146b163929b6533f02e91bdf21cb9563

 1 17f339ed03733f402f74cf386209aeb3

 ⋮

If there are no duplicates, all of the counts produced by uniq will be 1. Sort the results

numerically from high to low, and any counts greater than 1 will appear at the top of the output:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr

 3 f6464ed766daca87ba407aede21c8fcc

 2 c7978522c58425f6af3f095ef1de1cd5

 2 146b163929b6533f02e91bdf21cb9563

 1 d8ad913044a51408ec1ed8a204ea9502

 ⋮

Now let’s remove the nonduplicates. Their checksums are preceded by six spaces, the number

one, and a single space. We’ll use grep -v to remove these lines

17 | P A G E

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr | grep -v "

1 "

 3 f6464ed766daca87ba407aede21c8fcc

 2 c7978522c58425f6af3f095ef1de1cd5

 2 146b163929b6533f02e91bdf21cb9563

Finally, you have your list of duplicate checksums, sorted by the number of occurrences,

produced by a beautiful six-command pipeline. If it produces no output, there are no duplicate

files.

This command would be even more useful if it displayed the filenames of the duplicates, but that

operation requires features we haven’t discussed yet.

$ md5sum *.jpg | grep 146b163929b6533f02e91bdf21cb9563

146b163929b6533f02e91bdf21cb9563 image001.jpg

146b163929b6533f02e91bdf21cb9563 image003.jpg

and cleaning up the output with cut:

$ md5sum *.jpg | grep 146b163929b6533f02e91bdf21cb9563 | cut -c35-

image001.jpg

image003.jpg

Introducing the Shell

So, you can run commands at a prompt. But what is that prompt? Where does it come from, how

are your commands run, and why does it matter?

That little prompt is produced by a program called a shell. It’s a user interface that sits between

you and the Linux operating system. Linux supplies several shells, and the most common (and the

standard for this book) is called bash.

bash and other shells do much more than simply run commands. For example, when a command

includes a wildcard (*) to refer to multiple files at once:

$ ls *.py

data.py main.py user_interface.py

the wildcard is handled entirely by the shell, not by the program ls. The shell evaluates the

expression *.py and invisibly replaces it with a list of matching filenames before ls runs. In other

words, ls never sees the wildcard. From the perspective of ls, you typed the following command:

$ ls data.py main.py user_interface.py

It redirects stdin and stdout transparently so the programs involved have no idea they are

communicating with each other.

18 | P A G E

Every time a command runs, some steps are the responsibility of the invoked program, such as ls,

and some are the responsibility of the shell. Expert users understand which is which. That’s one

reason they can create long, complex commands off the top of their head and run them

successfully. They already know what the command will do before they press Enter, in part because

they understand the separation between the shell and the programs it invokes.

Rather than cover dozens of shell features, I’ll hand you just enough information to carry you to

the next step of your learning journey:

− Pattern matching for filenames

− Variables to store values

− Redirection of input and output

− Quoting and escaping to disable certain shell features

− The search path for locating programs to run

− Saving changes to your shell environment

SHELL VOCABULARY

The word shell has two meanings. Sometimes it means the concept of the Linux shell in general,

as in “The shell is a powerful tool” or “bash is a shell.” Other times it means a specific instance of a

shell running on a given Linux computer, awaiting your next command.

In this book, the meaning of shell should be clear from the context most of the time. When

necessary, I’ll refer to the second meaning as a shell instance, a running shell, or your current shell.

Some shell instances, but not all, present a prompt so you can interact with them. I’ll use the term

interactive shell to refer to these instances. Other shell instances are noninteractive—they run a

sequence of commands and exit.

PATTERN MATCHING FOR FILENAMES

you worked with several commands that accept filenames as arguments, such as cut, sort, and

grep. These commands (and many others) accept multiple filenames as arguments. For example,

you can search for the word Linux in one hundred files at once, named chapter1 through

chapter100:

$ grep Linux chapter1 chapter2 chapter3 chapter4 chapter5 ...and so

on...

Listing multiple files by name is a tedious time-waster, so the shell provides special characters as a

shorthand to refer to files or directories with similar names. Many folks call these characters

19 | P A G E

wildcards, but the more general concept is called pattern matching or globbing. Pattern matching

is one of the two most common techniques for speed that Linux users learn

Most Linux users are familiar with the star or asterisk character (*), which matches any sequence

of zero or more characters (except for a leading dot)1 in file or directory paths:

$ grep Linux chapter*

Behind the scenes, the shell (not grep!) expands the pattern chapter* into a list of 100 matching

filenames. Then the shell runs grep.

Many users have also seen the question mark (?) special character, which matches any single

character (except a leading dot). For example, you could search for the word Linux in chapters 1

through 9 only, by providing a single question mark to make the shell match single digits:

$ grep Linux chapter?

or in chapters 10 through 99, with two question marks to match two digits:

$ grep Linux chapter??

Fewer users are familiar with square brackets ([]), which request the shell to match a single

character from a set. For example, you could search only the first five chapters:

$ grep Linux chapter[12345]

Equivalently, you could supply a range of characters with a dash:

$ grep Linux chapter[1-5]

You could also search even-numbered chapters, combining the asterisk and the square brackets

to make the shell match filenames ending in an even digit:

$ grep Linux chapter*[02468]

Any characters, not just digits, may appear within the square brackets for matching. For example,

filenames that begin with a capital letter, contain an underscore, and end with an @ symbol would

be matched by the shell in this command:

$ ls [A-Z]*_*@

Terminology: Evaluating Expressions and Expanding Patterns

Strings that you enter on the command line, such as chapter* or Efficient Linux, are called

expressions. An entire command like ls -l chapter* is an expression too.

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch02.html#idm46086841675376

20 | P A G E

When the shell interprets and handles special characters in an expression, such as asterisks and

pipe symbols, we say that the shell evaluates the expression.

Pattern matching is one kind of evaluation. When the shell evaluates an expression that contains

pattern-matching symbols, such as chapter*, and replaces it with filenames that match the

pattern, we say that the shell expands the pattern.

Patterns are valid almost anywhere that you’d supply file or directory paths on the command line.

For example, you can list all files in the directory /etc with names ending in .conf using a pattern:

$ ls -1 /etc/*.conf

/etc/adduser.conf

/etc/appstream.conf

⋮
/etc/wodim.conf

Be careful using a pattern with a command that accepts just one file or directory argument, such

as cd. You might not get the behavior you expect:

$ ls

Pictures Poems Politics

$ cd P* Three directories will match

bash: cd: too many arguments

If a pattern doesn’t match any files, the shell leaves it unchanged to be passed literally as a

command argument. In the following command, the pattern *.doc matches nothing in the

current directory, so ls looks for a filename literally named *.doc and fails:

$ ls *.doc

/bin/ls: cannot access '*.doc': No such file or directory

When working with file patterns, two points are vitally important to remember. The first, as I’ve

already emphasized, is that the shell, not the invoked program, performs the pattern matching. I

know I keep repeating this, but I’m frequently surprised by how many Linux users don’t know it

and develop superstitions about why certain commands succeed or fail.

The second important point is that shell pattern matching applies only to file and directory paths.

It doesn’t work for usernames, hostnames, and other types of arguments that certain commands

accept. You also cannot type (say) s?rt at the beginning of the command line and expect the

shell to run the sort program. (Some Linux commands such as grep, sed, and awk perform their

own brands of pattern matching.

Filename Pattern Matching and Your Own Programs

All programs that accept filenames as arguments automatically “work” with pattern matching,

because the shell evaluates the patterns before the program runs. This is true even for programs

and scripts you write yourself. For example, if you wrote a program english2swedish that

21 | P A G E

translated files from English to Swedish and accepted multiple filenames on the command line,

you could instantly run it with pattern matching:

$ english2swedish *.txt

EVALUATING VARIABLES

A running shell can define variables and store values in them. A shell variable is a lot like a

variable in algebra—it has a name and a value. An example is the shell variable HOME. Its value is

the path to your Linux home directory, such as /home/smith. Another example is USER, whose

value is your Linux username, which I’ll assume is smith.

To print the values of HOME and USER on stdout, run the command printenv:

$ printenv HOME

/home/smith

$ printenv USER

smith

When the shell evaluates a variable, it replaces the variable name with its value. Simply place a

dollar sign in front of the name to evaluate the variable. For example, $HOME evaluates to the

string /home/smith.

The easiest way to watch the shell evaluate a command line is to run the echo command, which

simply prints its arguments (after the shell is finished evaluating them):

$ echo My name is $USER and my files are in $HOME Evaluating

variables

My name is smith and my files are in /home/smith

$ echo ch*ter9 Evaluating a

pattern

chapter9

WHERE VARIABLES COME FROM

Variables like USER and HOME are predefined by the shell. Their values are set automatically when

you log in. (More on this process later.) Traditionally, such predefined variables have uppercase

names.

You also may define or modify a variable anytime by assigning it a value using this syntax:

name=value

For example, if you work frequently in the directory /home/smith/Projects, you could assign its

name to a variable:

$ work=$HOME/Projects

22 | P A G E

and use it as a handy shortcut with cd:

$ cd $work

$ pwd

/home/smith/Projects

You may supply $work to any command that expects a directory:

$ cp myfile $work

$ ls $work

myfile

When defining a variable, no spaces are permitted around the equals sign. If you forget, the shell

will assume (wrongly) that the first word on the command line is a program to run, and the

equals sign and value are its arguments, and you’ll see an error message:

$ work = $HOME/Projects The shell assumes "work" is a

command

work: command not found

A user-defined variable like work is just as legitimate and usable as a system-defined variable like

HOME. The only practical difference is that some Linux programs change their behavior internally

based on the values of HOME, USER, and other system-defined variables. For example, a Linux

program with a graphical interface might retrieve your username from the shell and display it.

Such programs don’t pay attention to an invented variable like work because they weren’t

programmed to do so.

VARIABLES AND SUPERSTITION

When you print the value of a variable with echo:

$ echo $HOME

/home/smith

you might think that the echo command examines the HOME variable and prints its value. That is

not the case. echo knows nothing about variables. It just prints whatever arguments you hand it.

What’s really happening is that the shell evaluates $HOME before running echo. From echo’s

perspective, you typed

$ echo /home/smith

This behavior is extremely important to understand, especially as we delve into more complicated

commands. The shell evaluates the variables in a command—as well as patterns and other shell

constructs—before executing the command.

23 | P A G E

PATTERNS VERSUS VARIABLES

Let’s test your understanding of pattern and variable evaluation. Suppose you’re in a directory

with two subdirectories, mammals and reptiles, and oddly, the mammals subdirectory contains

files named lizard.txt and snake.txt:

$ ls

mammals reptiles

$ ls mammals

lizard.txt snake.txt

In the real world, lizards and snakes are not mammals, so the two files should be moved to the

reptiles subdirectory. Here are two proposed ways to do it. One works, and one does not:

mv mammals/*.txt reptiles Method 1

FILES="lizard.txt snake.txt"

mv mammals/$FILES reptiles Method 2

Method 1 works because patterns match an entire file path. See how the directory name mammals

is part of both matches for mammals/*.txt:

$ echo mammals/*.txt

mammals/lizard.txt mammals/snake.txt

So, method 1 operates as if you’d typed the following correct command:

$ mv mammals/lizard.txt mammals/snake.txt reptiles

Method 2 uses variables, which evaluate to their literal value only. They have no special handling

for file paths:

$ echo mammals/$FILES

mammals/lizard.txt snake.txt

So, method 2 operates as if you’d typed the following problematic command:

$ mv mammals/lizard.txt snake.txt reptiles

This command looks for the file snake.txt in the current directory, not in the mammals

subdirectory, and fails:

$ mv mammals/$FILES reptiles

/bin/mv: cannot stat 'snake.txt': No such file or directory

To make a variable work in this situation, use a for loop that prepends the directory name

mammals to each filename:

24 | P A G E

FILES="lizard.txt snake.txt"

for f in $FILES; do

 mv mammals/$f reptiles

done

SHORTENING COMMANDS WITH ALIASES

A variable is a name that stands in for a value. The shell also has names that stand in for

commands. They’re called aliases. Define an alias by inventing a name and following it with a

equals sign and a command:

$ alias g=grep A command with no arguments

$ alias ll="ls -l" A command with arguments: quotes are

required

Run an alias by typing its name as a command. When aliases are shorter than the commands they

invoke, you save typing time:

$ ll Runs "ls -l"

-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt

$ g Nutshell animals.txt Runs "grep Nutshell

animals.txt"

horse Linux in a Nutshell 2009 Siever, Ellen

donkey Cisco IOS in a Nutshell 2005 Boney, James

You can define an alias that has the same name as an existing command, effectively replacing that

command in your shell. This practice is called shadowing the command. Suppose you like the

less command for reading files, but you want it to clear the screen before displaying each page.

This feature is enabled with the -c option, so define an alias called “less” that runs less -c

$ alias less="less -c"

Aliases take precedence over commands of the same name, so you have now shadowed the less

command in the current shell.

To list a shell’s aliases and their values, run alias with no arguments:

$ alias

alias g='grep'

alias ll='ls -l'

To see the value of a single alias, run alias followed by its name:

$ alias g

alias g='grep'

To delete an alias from a shell, run unalias:

$ unalias g

25 | P A G E

REDIRECTING INPUT AND OUTPUT

The shell controls the input and output of the commands it runs. You’ve already seen one

example: pipes, which direct the stdout of one command to the stdin of another. The pipe syntax,

|, is a feature of the shell.

Another shell feature is redirecting stdout to a file. For example, if you use grep to print matching

lines from the animals.txt file

$ grep Perl animals.txt

alpaca Intermediate Perl 2012 Schwartz, Randal

You can send that output to a file instead, using a shell feature called output redirection. Simply

add the symbol > followed by the name of a file to receive the output:

$ grep Perl animals.txt > outfile

$ cat outfile

alpaca Intermediate Perl 2012 Schwartz, Randal

You have just redirected stdout to the file outfile instead of the display. If the file outfile doesn’t

exist, it’s created. If it does exist, redirection overwrites its contents. If you’d rather append to the

output file rather than overwrite it, use the symbol >> instead:

$ grep Perl animals.txt > outfile $

echo There was just one match >> outfile $ cat

outfile

alpaca Intermediate Perl 2012 Schwartz, Randal

There was just one match

Output redirection has a partner, input redirection, that redirects stdin to come from a file instead

of the keyboard. Use the symbol < followed by a filename to redirect stdin.

Many Linux commands that accept filenames as arguments, and read from those files, also read

from stdin when run with no arguments. An example is wc for counting lines, words, and

characters in a file:

$ wc animals.txt

 7 51 325 animals.txt

$ wc < animals.txt

 7 51 325

26 | P A G E

Standard Error (stderr) and Redirection

UIn your day-to-day Linux use, you may notice that some output cannot be redirected by >, such

as certain error messages. For example, ask cp to copy a file that doesn’t exist, and it produces this

error message:

$ cp nonexistent.txt file.txt

cp: cannot stat 'nonexistent.txt': No such file or directory

If you redirect the output (stdout) of this cp command to a file, errors, the message still appears

on-screen:

$ cp nonexistent.txt file.txt > errors

cp: cannot stat 'nonexistent.txt': No such file or directory

and the file errors is empty:

$ cat errors

Why does this happen? Linux commands can produce more than one stream of output. In

addition to stdout, there is also stderr (pronounced “standard error” or “standard err”), a second

stream of output that is traditionally reserved for error messages. The streams stderr and stdout

look identical on the display, but internally they are separate. You can redirect stderr with the

symbol 2> followed by a filename:

$ cp nonexistent.txt file.txt 2> errors

$ cat errors

cp: cannot stat 'nonexistent.txt': No such file or directory

and append stderr to a file with 2>> followed by a filename:

$ cp nonexistent.txt file.txt 2> errors

$ cp another.txt file.txt 2>> errors

$ cat errors

cp: cannot stat 'nonexistent.txt': No such file or directory

cp: cannot stat 'another.txt': No such file or directory

To redirect both stdout and stderr to the same file, use &> followed by a filename:

$ echo This file exists > goodfile.txt $ cat

goodfile.txt nonexistent.txt &> all.output

$ cat all.output

This file exists

cat: nonexistent.txt: No such file or directory

It’s very important to understand how these two wc commands differ in behavior:

27 | P A G E

− In the first command, wc receives the filename animals.txt as an argument, so wc is aware

that the file exists. wc deliberately opens the file on disk and reads its contents.

− In the second command, wc is invoked with no arguments, so it reads from stdin, which is

usually the keyboard. The shell, however, sneakily redirects stdin to come from

animals.txt instead. wc has no idea that the file animals.txt exists.

The shell can redirect input and output in the same command:

$ wc < animals.txt > count

$ cat count

 7 51 325

and can even use pipes at the same time. Here, grep reads from redirected stdin and pipes the

results to wc, which writes to redirected stdout, producing the file count:

grep Perl < animals.txt | wc > count

$ cat count

 1 6 47

DISABLING EVALUATION WITH QUOTES AND ESCAPES

Normally the shell uses whitespace as a separator between words. The following command has

four words—a program name followed by three arguments:

$ ls file1 file2 file3

Sometimes, however, you need the shell to treat whitespace as significant, not as a separator. A

common example is whitespace in a filename such as Efficient Linux Tips.txt:

$ ls -l

-rw-r--r-- 1 smith smith 36 Aug 9 22:12 Efficient Linux Tips.txt

If you refer to such a filename on the command line, your command may fail because the shell

treats the space characters as separators:

$ cat Efficient Linux Tips.txt

cat: Efficient: No such file or directory

cat: Linux: No such file or directory

cat: Tips.txt: No such file or directory

To force the shell to treat spaces as part of a filename, you have three options—single quotes,

double quotes, and backslashes:

$ cat 'Efficient Linux Tips.txt'

$ cat "Efficient Linux Tips.txt"

$ cat Efficient\ Linux\ Tips.txt

28 | P A G E

Single quotes tell the shell to treat every character in a string literally, even if the character

ordinarily has special meaning to the shell, such as spaces and dollar signs:

$ echo '$HOME'

$HOME

Double quotes tell the shell to treat all characters literally except for certain dollar signs and a few

others you’ll learn later:

$ echo "Notice that $HOME is evaluated" Double quotes

Notice that /home/smith is evaluated

$ echo 'Notice that $HOME is not' Single quotes

Notice that $HOME is not

A backslash, also called the escape character, tells the shell to treat the next character literally.

The following command includes an escaped dollar sign:

$ echo \$HOME

$HOME

Backslashes act as escape characters even within double quotes:

$ echo "The value of \$HOME is $HOME"

The value of $HOME is /home/smith

but not within single quotes:

$ echo 'The value of \$HOME is $HOME'

The value of \$HOME is $HOME

Use the backslash to escape a double quote character within double quotes:

$ echo "This message is \"sort of\" interesting"

This message is "sort of" interesting

A backslash at the end of a line disables the special nature of the invisible newline character,

allowing shell commands to span multiple lines:

$ echo "This is a very long message that needs to extend \

onto multiple lines"

This is a very long message that needs to extend onto multiple lines

Final backslashes are great for making pipelines more readable

$ cut -f1 grades \

 | sort \

 | uniq -c \

 | sort -nr \

29 | P A G E

 | head -n1 \

 | cut -c9

When used this way, the backslash is sometimes called a line continuation character.

A leading backslash before an alias escapes the alias, causing the shell to look for a command of

the same name, ignoring any shadowing:

$ alias less="less -c" Define an alias

$ less myfile Run the alias, which invokes less -c

$ \less myfile Run the standard less command, not the alias

LOCATING PROGRAMS TO BE RUN

When the shell first encounters a simple command, such as ls *.py, it’s just a string of

meaningless characters. Quick as a flash, the shell splits the string into two words, “ls” and “*.py”.

In this case, the first word is the name of a program on disk, and the shell must locate the

program to run it.

The program ls, it turns out, is an executable file in the directory /bin. You can verify its location

with this command:

$ ls -l /bin/ls

-rwxr-xr-x 1 root root 133792 Jan 18 2018 /bin/ls

or you can change directories with cd /bin and run this lovely, cryptic-looking command:

$ ls ls

ls

which uses the command ls to list the executable file ls.

How does the shell locate ls in the /bin directory? Behind the scenes, the shell consults a

prearranged list of directories that it holds in memory, called a search path. The list is stored as

the value of the shell variable PATH

$ echo $PATH

/home/smith/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/java/

bin

Directories in a search path are separated by colons (:). For a clearer view, convert the colons to

newline characters by piping the output to the tr command, which translates one character into

another

$ echo $PATH | tr : "\n"

/home/smith/bin

/usr/local/bin

/usr/bin

30 | P A G E

/bin

/usr/games

/usr/lib/java/bin

The shell consults directories in your search path from first to last when locating a program like

ls. “Does /home/smith/bin/ls exist? No. Does /usr/local/bin/ls exist? Nope. How about

/usr/bin/ls? No again! Maybe /bin/ls? Yes, there it is! I’ll run /bin/ls.” This search happens too

quickly to notice.

To locate a program in your search path, use the which command:

$ which cp

/bin/cp

$ which which

/usr/bin/which

or the more powerful (and verbose) type command, a shell builtin that also locates aliases,

functions, and shell builtins

$ type cp

cp is hashed (/bin/cp)

$ type ll

ll is aliased to ‘/bin/ls -l’

$ type type

type is a shell builtin

Your search path may contain the same-named command in different directories, such as

/usr/bin/less and /bin/less. The shell runs whichever command appears in the earlier directory in

the path. By leveraging this behavior, you can override a Linux command by placing a same-

named command in an earlier directory in your search path, such as your personal $HOME/bin

directory.

Search Path and Aliases

When the shell searches for a command by name, it checks if that name is an alias before

checking the search path. That’s why an alias can shadow (take precedence over) a command of

the same name.

The search path is a great example of taking something mysterious about Linux and showing it

has an ordinary explanation. The shell doesn’t pull commands out of thin air or locate them by

magic. It methodically examines directories in a list until it finds the requested executable file.

ENVIRONMENTS AND INITIALIZATION FILES, THE SHORT VERSION

A running shell holds a bunch of important information in variables: the search path, the current

directory, your preferred text editor, your customized shell prompt, and more. The variables of a

31 | P A G E

running shell are collectively called the shell’s environment. When the shell exits, its environment

is destroyed.

It would be extremely tedious to define every shell’s environment by hand. The solution is to

define the environment once, in shell scripts called startup files and initialization files, and have

every shell execute these scripts on startup. The effect is that certain information appears to be

“global” or “known” to all of your running shells.

It’s located in your home directory and named .bashrc (pronounced “dot bash R C”). Because its

name begins with a dot, ls doesn’t list it by default:

$ ls $HOME

apple banana carrot

$ ls -a $HOME

.bashrc apple banana carrot

If $HOME/.bashrc doesn’t exist, create it with a text editor. Commands you place in this file will

execute automatically when a shell starts up,5 so it’s a great place to define variables for the shell’s

environment, and other things important to the shell, such as aliases. Here is a sample .bashrc

file. Lines beginning with # are comments:

Set the search path

PATH=$HOME/bin:/usr/local/bin:/usr/bin:/bin

Set the shell prompt

PS1='$ '

Set your preferred text editor

EDITOR=emacs

Start in my work directory

cd $HOME/Work/Projects

Define an alias

alias g=grep

Offer a hearty greeting

echo "Welcome to Linux, friend!"

Any changes you make to $HOME/.bashrc do not affect any running shells, only future shells. You

can force a running shell to reread and execute $HOME/.bashrc with either of the following

commands:

$ source $HOME/.bashrc

$. $HOME/.bashrc

This process is known as sourcing the initialization file. If someone tells you to “source your dot-

bash-R-C file,” they mean run one of the preceding commands.

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/ch02.html#idm46086828415696

32 | P A G E

Rerunning Commands

Suppose you’ve just executed a lengthy command with a detailed pipeline, like this one from

“Detecting Duplicate Files”

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr

and you want to run it a second time. Don’t retype it! Instead, ask the shell to reach back into

history and rerun the command. Behind the scenes, the shell keeps a record of the commands you

invoke so you can easily recall and rerun them with a few keystrokes. This shell feature is called

command history. Expert Linux users make heavy use of command history to speed up their work

and avoid wasting time.

Similarly, suppose you make a mistake typing the preceding command before you run it, such as

misspelling “jpg” as “jg”:

$ md5sum *.jg | cut -c1-32 | sort | uniq -c | sort -nr

To fix the mistake, don’t press the Backspace key dozens of times and retype everything. Instead,

change the command in place. The shell supports command-line editing for fixing typos and

performing all sorts of modifications like a text editor can.

This chapter will show you how to save lots of time and typing by leveraging command history

and command-line editing.

VIEWING THE COMMAND HISTORY

A command history is simply a list of previous commands that you’ve executed in an interactive

shell. To see a shell’s history, run the history command, which is a shell builtin. The commands

appear in chronological order with ID numbers for easy reference. The output looks something

like this:

$ history

 1000 cd $HOME/Music

 1001 ls

 1002 mv jazz.mp3 jazzy-song.mp3

 1003 play jazzy-song.mp3

 ⋮ Omitting 477 lines
 1481 cd

 1482 firefox https://google.com

 1483 history Includes the command you just ran

The output of history can be hundreds of lines long (or more). Limit it to the most recent

commands by adding an integer argument, which specifies the number of lines to print:

33 | P A G E

$ history 3 Print the 3 most recent commands

 1482 firefox https://google.com

 1483 history

 1484 history 3

Since history writes to stdout, you also can process the output with pipes. For example, view

your history a screenful at a time:

$ history | less Earliest to latest entry

$ history | sort -nr | less Latest to earliest entry

or print only the historical commands containing the word cd:

$ history | grep -w cd

 1000 cd $HOME/Music

 1092 cd ..

 1123 cd Finances

 1375 cd Checking

 1481 cd

 1485 history | grep -w cd

To clear (delete) the history for the current shell, use the -c option:

$ history -c

RECALLING COMMANDS FROM THE HISTORY

Three time-saving ways to recall commands from a shell’s history:

 Cursoring:

 Extremely simple to learn but often slow in practice

 History expansion

 Harder to learn (frankly, it’s cryptic) but can be very fast

 Incremental search

 Both simple and fast

Each method is best in particular situations, so I recommend learning all three. The more

techniques you know, the better you can choose the right one in any situation.

CURSORING THROUGH HISTORY

To recall your previous command in a given shell, press the up arrow key. It’s that simple. Keep

pressing the up arrow to recall earlier commands in reverse chronological order. Press the down

34 | P A G E

arrow to head in the other direction (toward more recent commands). When you reach the

desired command, press Enter to run it.

Cursoring through the command history is one of the two most common speedups that Linux

users learn. Cursoring is efficient if your desired command is nearby in the history—no more than

two or three commands in the past—but it’s tedious to reach commands that are further away.

Whacking the up arrow 137 times gets old quickly.

The best use case for cursoring is recalling and running the immediately previous command.

Frequently Asked Questions About Command History

How many commands are stored in a shell’s history?

The maximum is five hundred or whatever number is stored in the shell variable

HISTSIZE, which you can change:

$ echo $HISTSIZE

500

$ HISTSIZE=10000

Computer memory is so cheap and plentiful that it makes sense to set HISTSIZE to a large

number so you can recall and rerun commands from the distant past. (A history of 10,000

commands occupies only about 200K of memory.) Or be daring and store unlimited

commands by setting the value to -1.

What text is appended to the history?

 The shell appends exactly what you type, unevaluated. If you run ls $HOME, the history

will contain “ls $HOME”, not “ls /home/smith”.`

Are repeated commands appended to the history?

 The answer depends on the value of the variable HISTCONTROL. By default, if this variable

is unset, then every command is appended. If the value is ignoredups (which I recommend),

then repeated commands are not appended if they are consecutive

$ HISTCONTROL=ignoredups

Does each shell have a separate history, or do all shells share a single history?

 Each interactive shell has a separate history.

I launched a new interactive shell and it already has a history. Why?

 Whenever an interactive shell exits, it writes its history to the file $HOME/.bash_history or

whatever path is stored in the shell variable HISTFILE:

35 | P A G E

$ echo $HISTFILE

/home/smith/.bash_history

New interactive shells load this file on startup, so they immediately have a history. It’s a quirky

system if you’re running many shells because they all write $HISTFILE on exit, so it’s a bit

unpredictable which history a new shell will load.

The variable HISTFILESIZE controls how many lines of history are written to the file. If you

change HISTSIZE to control the size of the history in memory, consider updating HISTFILESIZE

as well:

$ echo $HISTFILESIZE

500

$ HISTFILESIZE=10000

HISTORY EXPANSION

History expansion is a shell feature that accesses the command history using special expressions.

The expressions begin with an exclamation point, which traditionally is pronounced “bang.” For

example, two exclamation points in a row (“bang bang”) evaluates to the immediately previous

command:

$ echo Efficient Linux

Efficient Linux

$!! echo

Efficient Linux

To refer to the most recent command that began with a certain string, place an exclamation point

in front of that string. So, to rerun the most recent grep command, run “bang grep”:

$!grep

grep Perl animals.txt

alpaca Intermediate Perl 2012 Schwartz, Randal

To refer to the most recent command that contained a given string somewhere, not just at the

beginning of the command, surround the string with question marks as well

$!?grep?

history | grep -w cd

 1000 cd $HOME/Music

 1092 cd ..

⋮

You can also retrieve a particular command from a shell’s history by its absolute position—the ID

number to its left in the output of history. For example, the expression !1203 (“bang 1023”)

means “the command at position 1023 in the history”:

36 | P A G E

$ history | grep hosts

 1203 cat /etc/hosts

$!1203 The command at position 1023

cat /etc/hosts

127.0.0.1 localhost

127.0.1.1 example.directdevops.blog

::1 example.directdevops.blog

A negative value retrieves a command by its relative position in the history, rather than absolute

position. For example, !-3 (“bang minus three”) means “the command you executed three

commands ago”:

$ history

 4197 cd /tmp/junk

 4198 rm *

 4199 head -n2 /etc/hosts

 4199 cd

 4200 history

$!-3

head -n2 /etc/hosts

127.0.0.1 localhost

127.0.1.1 example.directdevops.blog

History expansion is quick and convenient, if a bit cryptic

INCREMENTAL SEARCH OF COMMAND HISTORY

Wouldn’t it be great if you could type a few characters of a command and the rest would appear

instantly, ready to run? Well, you can. This speedy feature of the shell, called incremental search,

is similar to the interactive suggestions provided by web search engines. In most cases,

incremental search is the easiest and fastest technique to recall commands from history, even

commands you ran long ago. I highly recommend adding it to your toolbox:

1. At the shell prompt, press Ctrl-R (the R stands for reverse incremental search).

2. Start typing any part of a previous command—beginning, middle, or end.

3. With each character you type, the shell displays the most recent historical command that

matches your typing so far.

4. When you see the command you want, press Enter to run it.

Suppose you typed the command cd $HOME/Finances/Bank a while ago and you want to

rerun it. Press Ctrl-R at the shell prompt. The prompt changes to indicate an incremental search:

(reverse-i-search)`':

37 | P A G E

Start typing the desired command. For example, type c:

(reverse-i-search)`': c

The shell displays its most recent command that contains the string c, highlighting what you’ve

typed:

(reverse-i-search)`': less /etc/hosts

Type the next letter, d:

(reverse-i-search)`': cd

The shell displays its most recent command that contains the string cd, again highlighting what

you’ve typed:

(reverse-i-search)`': cd /usr/local

Continue typing the command, adding a space and a dollar sign:

(reverse-i-search)`': cd $

The command line becomes:

(reverse-i-search)`': cd $HOME/Finances/Bank

This is the command you want. Press Enter to run it, and you’re done in five quick keystrokes.

I’ve assumed here that cd $HOME/Finances/Bank was the most recent matching command in

the history. What if it’s not? What if you typed a whole bunch of commands that contain the

same string? If so, the preceding incremental search would have displayed a different match, such

as:

(reverse-i-search)`': cd $HOME/Music

What now? You could type more characters to hone in on your desired command, but instead,

press Ctrl-R a second time. This keystroke causes the shell to jump to the next matching

command in the history:

(reverse-i-search)`': cd $HOME/Linux/Books

Keep pressing Ctrl-R until you reach the desired command:

(reverse-i-search)`': cd $HOME/Finances/Bank

and press Enter to run it.

Here are a few more tricks with incremental search:

38 | P A G E

− To recall the most recent string that you searched for and executed, begin by pressing

Ctrl-R twice in a row.

− To stop an incremental search and continue working on the current command, press the

Escape key, or Ctrl-J, or any key for command-line editing (the next topic in this chapter),

such as the left or right arrow key.

− To quit an incremental search and clear the command line, press Ctrl-G or Ctrl-C.

Take the time to become expert with incremental search. You’ll soon be locating commands with

incredible speed

COMMAND-LINE EDITING

There are all sorts of reasons to edit a command, either while you type it or after you’ve run it:

− To fix mistakes

− To create a command piece by piece, such as by typing the end of the command first, then

moving to the start of the line and typing the beginning

− To construct a new command based on a previous one from your command history 4

Three ways to edit a command to build your skill and speed:

− Cursoring: Again, the slowest and least powerful method but simple to learn

− Caret notation: A form of history expansion

− Emacs- or Vim-style keystrokes: To edit the command line in powerful ways

Cursoring Within a Command

Simply press the left arrow and right arrow keys to move back and forth on the command line,

one character at a time. Use the Backspace or Delete key to remove text, and then type any

corrections you need. Below Table summarizes these and other standard keystrokes for editing

the command line.

Cursoring back and forth is easy but inefficient. It’s best when the changes are small and simple.

Keystroke Action

Left arrow Move left by one character

Right arrow Move right by one character

Ctrl + left arrow Move left by one word

Ctrl + right arrow Move right by one word

39 | P A G E

Home Move to beginning of command line

End Move to end of command line

Backspace Delete one character before the cursor

Delete Delete one character beneath the cursor

History Expansion with Carets

Suppose you’ve mistakenly run the following command by typing jg instead of jpg:

$ md5sum *.jg | cut -c1-32 | sort | uniq -c | sort -nr

md5sum: '*.jg': No such file or directory

To run the command properly, you could recall it from the command history, cursor over to the

mistake and fix it, but there’s a quicker way to accomplish your goal. Just type the old (wrong)

text, the new (corrected) text, and a pair of carets (^), like this:

$ ^jg^jpg

Press Enter, and the correct command will appear and run:

$ ^jg^jpg

md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr

⋮

The caret syntax, which is a type of history expansion, means, “In the previous command, instead

of jg, substitute jpg.” Notice that the shell helpfully prints the new command before executing it,

which is standard behavior for history expansion.

This technique changes only the first occurrence of the source string (jg) in the command. If your

original command contained jg more than once, only the first instance would change to jpg

Vim-Style Command-Line Editing

The most powerful way to edit a command line is with familiar keystrokes inspired by the text

editors Emacs and Vim. If you’re already skilled with one of these editors, you can jump into this

style of command-line editing right away.

The shell default is Emacs-style editing, and I recommend it as easier to learn and use. If you

prefer Vim-style editing, run the following command (or add it to your $HOME/.bashrc file and

source it):

Action Emacs Vim

Move forward by one character Ctrl-f h

Move backward by one character Ctrl-b l

Move forward by one word Meta-f w

40 | P A G E

Move backward by one word Meta-b b

Move to beginning of line Ctrl-a 0

Move to end of line Ctrl-e $

Transpose (swap) two characters Ctrl-t xp

Transpose (swap) two words Meta-t n/a

Capitalize first letter of next word Meta-c w~

Uppercase entire next word Meta-u n/a

Lowercase entire next word Meta-l n/a

Change case of the current character n/a ~

Insert the next character verbatim, including
control characters

Ctrl-v Ctrl-v

Delete forward by one character Ctrl-d x

Delete backward by one character Backspace or Ctrl-h X

Cut forward by one word Meta-d dw

Cut backward by one word Meta-Backspace or

Ctrl-w

db

Cut from cursor to beginning of line Ctrl-u d^

Cut from cursor to end of line Ctrl-k D

Delete the entire line Ctrl-e Ctrl-u dd

Paste (yank) the most recently deleted text Ctrl-y p

Paste (yank) the next deleted text (after a previous
yank)

Meta-y n/a

Undo the previous editing operation Ctrl-_ u

Undo all edits made so far Meta-r U

Switch from insertion mode to command mode n/a Escape

Switch from command mode to insertion mode n/a i

Abort an edit operation in progress Ctrl-g n/a

Clear the display Ctrl-l Ctrl-l

Cruising the Filesystem

The techniques in this chapter will help you navigate the filesystem more quickly with less typing.

They look deceptively simple but have enormous bang for the buck, with small learning curves

and big payoffs. These techniques fall into two broad categories:

− Moving quickly to a specific directory

− Returning rapidly to a directory you’ve visited before

41 | P A G E

VISITING SPECIFIC DIRECTORIES EFFICIENTLY

If you ask 10 Linux experts what is the most tedious aspect of the command line, seven of them

will say, “Typing long directory paths.”

After all, if your work files are in /home/smith/Work/Projects/Apps/Neutron-Star/src/include,

your financial documents are in /home/smith/Finances/Bank/Checking/Statements, and your

videos are in /data/Arts/Video/Collection, it’s no fun to retype these paths over and over. In this

section, you’ll learn techniques to navigate to a given directory efficiently.

Jump to Your Home Directory

Let’s begin with the basics. No matter where you go in the filesystem, you can return to your

home directory by running cd with no arguments:

$ pwd

/etc

$ cd

$ pwd

/home/smith

To jump to subdirectories within your home directory from anywhere in the filesystem, refer to

your home directory with a shorthand rather than an absolute path such as /home/smith. One

shorthand is the shell variable HOME:

$ cd $HOME/Work

Another is a tilde:

$ cd ~/Work

Both $HOME and ~ are expressions expanded by the shell, a fact that you can verify by echoing

them to stdout:

$ echo $HOME ~

/home/smith /home/smith

The tilde can also refer to another user’s home directory if you place it immediately in front of

their username:

$ echo ~jones

/home/jones

Move Faster with Tab Completion

When you’re entering cd commands, save typing by pressing the Tab key to produce directory

names automatically. As a demonstration, visit a directory that contains subdirectories, such as

/usr:

42 | P A G E

$ cd /usr

$ ls

bin games include lib local sbin share src

Suppose you want to visit the subdirectory share. Type sha and press the Tab key once:

$ cd sha<Tab>

The shell completes the directory name for you:

$ cd share/

This handy shortcut is called tab completion. It works immediately when the text that you’ve

typed matches a single directory name. When the text matches multiple directory names, your

shell needs more information to complete the desired name. Suppose you had typed only s and

pressed Tab:

$ cd s<Tab>

The shell cannot complete the name share (yet) because other directory names begin with s too:

sbin and src. Press Tab a second time and the shell prints all possible completions to guide you:

$ cd s<Tab><Tab>

sbin/ share/ src/

and waits for your next action. To resolve the ambiguity, type another character, h, and press Tab

once:

$ cd sh<Tab>

The shell completes the name of the directory for you, from sh to share:

$ cd share/

In general, press Tab once to perform as much completion as possible, or press twice to print all

possible completions. The more characters you type, the less ambiguity and the better the match.

Hop to Frequently Visited Directories Using Aliases or Variables

If you visit a faraway directory frequently, such as /home/smith/Work/⁠Projects/Web/src/include,

create an alias that performs the cd operation:

In a shell configuration file:

alias work="cd $HOME/Work/Projects/Web/src/include"

Simply run the alias anytime to reach your destination:

$ work

$ pwd

/home/smith/Work/Projects/Web/src/include

43 | P A G E

Alternatively, create a variable to hold the directory path:

$ work=$HOME/Work/Projects/Web/src/include

$ cd $work

$ pwd

/home/smith/Work/Projects/Web/src/include

$ ls $work/css

main.css mobile.css

Edit Frequently Edited Files with an Alias

Sometimes, the reason for visiting a directory frequently is to edit a particular file. If that’s the

case, consider defining an alias to edit that file by absolute path without changing directory. The

following alias definition lets you edit $HOME/.bashrc, no matter where you are in the filesystem,

by running rcedit. No cd is required

Place in a shell configuration file and source it:

alias rcedit='$EDITOR $HOME/.bashrc'

If you regularly visit lots of directories with long paths, you can create aliases or variables for each

of them. This approach has some disadvantages, however:

− It’s hard to remember all those aliases/variables.

− You might accidentally create an alias with the same name as an existing command,

causing a conflict.

An alternative is to create a shell function like the one below

Define the qcd function

qcd () {

 # Accept 1 argument that's a string key, and perform a different

 # "cd" operation for each key.

 case "$1" in

 work)

 cd $HOME/Work/Projects/Web/src/include

 ;;

 recipes)

 cd $HOME/Family/Cooking/Recipes

 ;;

 video)

 cd /data/Arts/Video/Collection

 ;;

 beatles)

 cd $HOME/Music/mp3/Artists/B/Beatles

 ;;

 *)

 # The supplied argument was not one of the supported keys

44 | P A G E

 echo "qcd: unknown key '$1'"

 return 1

 ;;

 esac

 # Helpfully print the current directory name to indicate where you

are

 pwd

}

Set up tab completion

complete -W "work recipes video beatles" qcd

Store the function in a shell configuration file such as $HOME/.bashrc. source it, and it’s ready to

run. Type qcd followed by one of the supported keys to quickly visit the associated directory:

$ qcd beatles

/home/smith/Music/mp3/Artists/B/Beatles

As a bonus, the script’s final line runs the command complete, a shell builtin that sets up

customized tab completion for qcd, so it completes the four supported keys. Now you don’t have

to remember qcd’s arguments! Just type qcd followed by a space and press the Tab key twice, and

the shell will print all the keys for your reference, and you can complete any of them in the usual

way:

$ qcd <Tab><Tab>

beatles recipes video work

$ qcd v<Tab><Enter>

/data/Arts/Video/Collection

Make a Big Filesystem Feel Smaller with CDPATH

The qcd function handles only the directories that you specify. The shell provides a more general

cd-ing solution without this shortcoming, called a cd search path. This shell feature transformed

how I navigate the Linux filesystem.

uppose you have an important subdirectory that you visit often, named Photos. It’s located at

/home/smith/Family/Memories/Photos. As you cruise around the filesystem, anytime you want to

get to the Photos directory, you may have to type a long path, such as:

$ cd ~/Family/Memories/Photos

Wouldn’t it be great if you could shorten this path to just Photos, no matter where you are in the

filesystem, and reach your subdirectory?

$ cd Photos

Normally, this command would fail:

45 | P A G E

bash: cd: Photos: No such file or directory

unless you happen to be in the correct parent directory (~/Family/Memories) or some other

directory with a Photos subdirectory by coincidence. Well, with a little setup, you can instruct cd

to search for your Photos subdirectory in locations other than your current directory. The search

is lightning fast and looks only in parent directories that you specify. For example, you could

instruct cd to search $HOME/Family/Memories in addition to the current directory. Then, when

you type cd Photos from elsewhere in the filesystem, cd will succeed:

$ pwd

/etc

$ cd Photos

/home/smith/Family/Memories/Photos

A cd search path works like your command search path, $PATH, but instead of finding commands,

it finds subdirectories. Configure it with the shell variable CDPATH, which has the same format as

PATH: a list of directories separated by colons. If your CDPATH consists of these four directories, for

example:

$HOME:$HOME/Projects:$HOME/Family/Memories:/usr/local

and you type:

$ cd Photos

then cd will check the existence of the following directories in order, until it finds one or it fails

entirely:

− Photos in the current directory

− $HOME/Photos

− $HOME/Projects/Photos

− $HOME/Family/Memories/Photos

− /usr/local/Photos

In this case, cd succeeds on its fourth try and changes directory to

$HOME/Family/Memories/Photos. If two directories in $CDPATH have a subdirectory named

Photos, the earlier parent wins.

46 | P A G E

Returning to Directories Efficiently

You’ve just seen how to visit a directory efficiently. Now I’ll show you how to revisit a directory

quickly when you need to go back.

Toggle Between Two Directories with “cd -”

Suppose you’re working in a deep directory and you run cd to go somewhere else:

$ pwd

/home/smith/Finances/Bank/Checking/Statements

$ cd /etc

and then think, “No, wait, I want to go back to the Statements directory where I just was.” Don’t

retype the long directory path. Just run cd with a dash as an argument:

$ cd -

/home/smith/Finances/Bank/Checking/Statements

This command returns your shell to its previous directory and helpfully prints its absolute path so

you know where you are.

To jump back and forth between a pair of directories, run cd - repeatedly. This is a time-saver

when you’re doing focused work in two directories in a single shell. There’s a catch, however: the

shell remembers just one previous directory at a time. For example, if you are toggling between

/usr/local/bin and /etc:

$ pwd

/usr/local/bin

$ cd /etc The shell remembers /usr/local/bin

$ cd - The shell remembers /etc

/usr/local/bin

$ cd - The shell remembers /usr/local/bin

/etc

